[1]TANG Youming,SUN Guanyu,SUN Guibin,et al.Autonomous vehicle trajectory planning based on urban overtaking conditions[J].CAAI Transactions on Intelligent Systems,2024,19(3):619-626.[doi:10.11992/tis.202209060]
Copy

Autonomous vehicle trajectory planning based on urban overtaking conditions

References:
[1] 《中国公路学报》编辑部. 中国交通工程学术研究综述·2016[J]. 中国公路学报, 2016, 29(6): 1–161
Editorial board of the Chinese journal of highways. Review on China’s traffic engineering research progress: 2016[J]. China journal of highway and transport, 2016, 29(6): 1–161
[2] DANIEL W, MARTIN H. Automated driving: safer and more efficient future driving[M]. New Yor: Springer, 2016.
[3] ZHAO Can, LI Li, PEI Xin, et al. A comparative study of state-of-the-art driving strategies for autonomous vehicles[J]. Accident analysis & prevention, 2021, 150: 105937.
[4] 张新钰, 邹镇洪, 李志伟, 等. 面向自动驾驶目标检测的深度多模态融合技术[J]. 智能系统学报, 2020, 15(4): 758–771
ZHANG Xinyu, ZOU Zhenhong, LI Zhiwei, et al. Deep multi-modal fusion in object detection for autonomous driving[J]. CAAI transactions on intelligent systems, 2020, 15(4): 758–771
[5] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1–14
LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of automotive safety and energy, 2017, 8(1): 1–14
[6] GONZáLEZ D, PéREZ J, MILANéS V, et al. A review of motion planning techniques for automated vehicles[J]. IEEE transactions on intelligent transportation systems, 2016, 17(4): 1135–1145.
[7] KATRAKAZAS C, QUDDUS M, CHEN Wenhua, et al. Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions[J]. Transportation research part C:emerging technologies, 2015, 60: 416–42.
[8] ZHOU Yulan, HUANG Nannan. Airport AGV path optimization model based on ant colony algorithm to optimize Dijkstra algorithm in urban systems[J]. Sustainable computing:informatics and systems, 2022, 35: 100716.
[9] WANG Xingdong, ZHANG Haowei, LIU Shuo, et al. Path planning of scenic spots based on improved A* algorithm[J]. Scientific reports, 2022, 12(1): 1320.
[10] LIU Lisang, LIN Jiafeng, YAO Jinxin, et al. Path planning for smart car based on dijkstra algorithm and dynamic window approach[J]. Wireless communications and mobile computing, 2021, 2021: 8881684.
[11] 李娟, 张韵, 陈涛. 改进RRT算法在未知三维环境下AUV目标搜索中的应用[J]. 智能系统学报, 2022, 17(2): 368–375
LI Juan, ZHANG Yun, CHEN Tao. Application of the improved RRT algorithm to AUV target search in an unknown 3D environment[J]. CAAI transactions on intelligent systems, 2022, 17(2): 368–375
[12] BAE I, KIM J H, MOON J, et al. Lane change maneuver based on bezier curve providing comfort experience for autonomous vehicle users[C]//2019 IEEE Intelligent Transportation Systems Conference. Auckland: IEEE, 2019: 2272–2277.
[13] 王星, 赵海良, 王志刚. 基于邻域系统的智能车辆最优轨迹规划方法[J]. 智能系统学报, 2019, 14(5): 1040–1047
WANG Xing, ZHAO Hailiang, WANG Zhigang. Optimal trajectory planning method of intelligent vehicles based on neighborhood system[J]. CAAI transactions on intelligent systems, 2019, 14(5): 1040–1047
[14] ROSTAMI S M H, SANGAIAH A K, WANG Jin, et al. Obstacle avoidance of mobile robots using modified artificial potential field algorithm[J]. EURASIP journal on wireless communications and networking, 2019, 2019(1): 70.
[15] WANG Pengwei, GAO Song, LI Liang, et al. Obstacle avoidance path planning design for autonomous driving vehicles based on an improved artificial potential field algorithm[J]. Energies, 2019, 12(12): 2342.
[16] SANG Hongqiang, YOU Yusong, SUN Xiujun, et al. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations[J]. Ocean engineering, 2021, 223: 108709.
[17] FALCONE. Nonlinear model predictive control for autonomous vehicles [D]. Benevento : University of Sannio, 2007.
[18] 张志勇, 龙凯, 杜荣华, 等. 自动驾驶汽车高速超车轨迹跟踪协调控制[J]. 汽车工程, 2021, 43(7): 995–1004
ZHANG Zhiyong, LONG Kai, DU Ronghua, et al. Trajectory tracking coordinated control for autonomous vehicle in high-speed overtaking[J]. Automotive engineering, 2021, 43(7): 995–1004
[19] BHARGAV J, BETZ J, ZEHNG H, et al. Deriving spatial policies for overtaking maneuvers with autonomous vehicles[C]//2022 14th International Conference on COMmunication Systems & NETworkS. Bangalore: IEEE, 2022: 859–864.
[20] 张家旭, 王晨, 赵健. 基于改进人工势场法的汽车弯道超车路径规划与跟踪控制[J]. 汽车工程, 2021, 43(4): 546–552
ZHANG Jiaxu, WANG Chen, ZHAO Jian. Path planning and tracking control for vehicle overtaking on curve based on modified artificial potential field method[J]. Automotive engineering, 2021, 43(4): 546–552
[21] 王树凤, 张钧鑫, 刘宗锋. 基于改进人工势场法的智能车辆超车路径规划研究[J]. 汽车技术, 2018(3): 5–9
WANG Shufeng, ZHANG Junxin, LIU Zongfeng. A research on overtaking lane planning for intelligent vehicles based on improved artificial potential field method[J]. Automobile technology, 2018(3): 5–9
[22] WU Qiong, CHENG Shuo, LI Liang, et al. A fuzzy-inference-based reinforcement learning method of overtaking decision making for automated vehicles[J]. Proceedings of the institution of mechanical engineers, part D:journal of automobile engineering, 2022, 236(1): 75–83.
[23] JEON S, LEE K, KUM D. Overtaking decision and trajectory planning in highway via hierarchical architecture of conditional state machine and chance constrained model predictive control[J]. Robotics and autonomous systems, 2022, 151: 104014.
[24] LIU J C, JAYAKUMAR P, OVERHOLT J L, et al. The role of model fidelity in model predictive control based hazard avoidance in unmanned ground vehicles using LIDAR sensors[C]//Proceedings of ASME 2013 Dynamic Systems and Control Conference, Palo Alto: ASMI, 2014.
[25] 石贞洪. 基于模糊MPC和APF的智能汽车转向避撞控制研究[D]. 镇江: 江苏大学, 2020.
SHI Zhenhong. Study on steering avoidance control of intelligent vehicle based on fuzzy MPC and APF[D]. Zhenjiang: Jiangsu University, 2020.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems