[1]CUI Tiejun,LI Shasha.Study on entropy of system fault evolution process and its influence on logical relationships[J].CAAI Transactions on Intelligent Systems,2024,19(3):749-756.[doi:10.11992/tis.202209036]
Copy

Study on entropy of system fault evolution process and its influence on logical relationships

References:
[1] 崔铁军, 李莎莎. 系统可靠-失效模型的哲学意义与智能实现[J]. 智能系统学报, 2020, 15(6): 1104–1112
CUI Tiejun, LI Shasha. Philosophical significance and implementation of an intelligent system based on the system reliability-failure model[J]. CAAI transactions on intelligent systems, 2020, 15(6): 1104–1112
[2] 崔铁军, 李莎莎. 系统故障演化过程的可拓学原理[J]. 广东工业大学学报, 2020, 37(5): 1–6
CUI Tiejun, LI Shasha. An extension theory of system fault evolution process[J]. Journal of Guangdong University of Technology, 2020, 37(5): 1–6
[3] 崔铁军. 空间故障网络理论与系统故障演化过程研究[J]. 安全与环境学报, 2020, 20(4): 1255–1262
CUI Tiejun. Profound trace and exploration into the space fault network theory and the system fault evolution process[J]. Journal of safety and environment, 2020, 20(4): 1255–1262
[4] 崔铁军. 系统故障演化过程描述方法研究[J]. 计算机应用研究, 2020, 37(10): 3006–3009
CUI Tiejun. Research on description method of system fault evolution process[J]. Application research of computers, 2020, 37(10): 3006–3009
[5] 魏东涛, 刘晓东, 周骏, 等. 基于DSM与信息熵的装备体系结构贡献率分析[J/OL]. 系统工程与电子技术, 2022: 1-9. (2022-03-16). https://kns.cnki.net/kcms/detail/11.2422.tn.20220314.1602.008.html.
WEI Dongtao, LIU Xiaodong, ZHOU Jun, et al. Evaluation method of equipment’s structure contribution rate to system-of-systems based on DSM and information entropy[J/OL]. Systems engineering and electronics, 2022: 1-9. (2022-03-16). https://kns.cnki.net/kcms/detail/11.2422.tn.20220314.1602.008.html.
[6] 刘雁, 李宇宸, 张赫, 等. 基于EWT的离心压气机出口动态压力样本熵分析[J]. 航空动力学报, 2023, 38(3): 655–664
LIU Yan, LI Yuchen, ZHANG He, et al. Sample entropy characteristics of dynamic pressure at outlet of centrifugal compressor based on EWT[J]. Journal of aerospace power, 2023, 38(3): 655–664
[7] 胡浩然, 陈树新, 吴昊, 等. 面向连续-离散系统的自适应最大相关熵滤波算法[J/OL]. 西安交通大学学报 2022(6): 1-9. (2022-03-08). https://kns.cnki.net/kcms/detail/61.1069.T.20220304.1843.006.html.
HU Haoran, CHEN Shuxin, WU Hao, et al. Adaptive maximum correntropy filtering algorithm for continuous-discrete systems[J/OL]. Journal of Xi’an Jiaotong University, 2022(6): 1-9. (2022-03-08). https://kns.cnki.net/kcms/detail/61.1069.T.20220304.1843.006.html.
[8] 陶洋, 祝小钧, 杨柳. 基于皮尔逊相关系数和信息熵的多传感器数据融合[J/OL]. 小型微型计算机系统, 2022: 1-7. (2022-03-01). https://kns.cnki.net/kcms/detail/21.1106.tp.20220225.1128.006.html.
TAO Yang, ZHU Xiaojun, YANG Liu. Multi-sensor data fusion based on Pearson coefficient and information entropy[J/OL]. Journal of Chinese computer systems, 2022: 1-7. (2022-03-01). https://kns.cnki.net/kcms/detail/21.1106.tp.20220225.1128.006.html.
[9] 伍文城, 王晓茹, 宋新立. 面向阻尼控制的交直流混合系统线性状态空间模型辨识[J/OL]. 电力系统自动化, 2022: 1-15. (2022-02-18) [ 2022-09-18]. https://kns.cnki.net/kcms/detail/32.1180.TP.20220217.1544.002.html.
WU Wencheng, WANG Xiaoru, SONG Xinli. Linear state space model identification of AC/DC hybrid system for damping control[J/OL]. Automation of electric power systems, 2022: 1-15. (2022-02-18)[ 2022-09-18]. https://kns.cnki.net/kcms/detail/32.1180.TP.20220217.1544.002.html.
[10] 陈思宏, 沈浩靖, 王冉, 等. 预测不确定性与对抗鲁棒性的关系研究[J]. 软件学报, 2022, 33(2): 524–538
CHEN Sihong, SHEN Haojing, WANG Ran, et al. Relationship between prediction uncertainty and adversarial robustness[J]. Journal of software, 2022, 33(2): 524–538
[11] 穆钢, 陈奇, 刘洪波, 等. 揭示电力系统运行数据中因果关系的逆信息熵因果推理方法[J/OL]. 中国电机工程学报, 2022: 1-14. (2022-01-27) [2022-09-18]. https://kns.cnki.net/kcms/detail/11.2107.TM.20220125.1748.007.html.
MU Gang, CHEN Qi, LIU Hongbo, et al. A reciprocal information entropy causal inference method for exploring the cause-effect relationship in power system operation data[J/OL]. Proceedings of the CSEE, 2022: 1-14. (2022-01-27) [2022-09-18]. https://kns.cnki.net/kcms/detail/11.2107.TM.20220125.1748.007.html.
[12] 郁彤彤, 王坚, 陈晓薇. 熵修正的混合人工蜂群-蝙蝠算法人群疏散模型[J]. 哈尔滨工业大学学报, 2021, 53(12): 80–88
YU Tongtong, WANG Jian, CHEN Xiaowei. Hybrid artificial bee colony-bat algorithm-based evacuation model with entropy correction[J]. Journal of Harbin institute of technology, 2021, 53(12): 80–88
[13] 李金海, 贺建君. 多粒度形式背景的不确定性度量与最优粒度选择[J]. 控制与决策, 2022, 37(5): 1299–1308
LI Jinhai, HE Jianjun. Uncertainty measurement and optimal granularity selection for multi-granularity formal context[J]. Control and decision, 2022, 37(5): 1299–1308
[14] 杨挺, 张璐, 张亚健, 等. 基于信息熵计算模型的电力信息物理系统融合控制方法[J]. 电力系统自动化, 2021, 45(12): 65–74
YANG Ting, ZHANG Lu, ZHANG Yajian, et al. Fusion control method for cyber-physical power system based on information entropy calculation model[J]. Automation of electric power systems, 2021, 45(12): 65–74
[15] 屠红艳, 张挺, 夏鹏飞, 等. 基于改进型变分自编码器的不确定性空间信息重建方法[J]. 计算机应用, 2021, 41(10): 2959–2963
TU Hongyan, ZHANG Ting, XIA Pengfei, et al. Reconstruction method for uncertain spatial information based on improved variational auto-encoder[J]. Journal of computer applications, 2021, 41(10): 2959–2963
[16] 吕萍, 常玉慧, 钱进. 知识粒度框架下不确定性度量研究[J]. 模糊系统与数学, 2020, 34(6): 140–149
LYU Ping, CHANG Yuhui, QIAN Jin. Research on uncertainty measures using knowledge granulation[J]. Fuzzy systems and mathematics, 2020, 34(6): 140–149
[17] 于本成, 丁世飞. 基于改进EMD算法的熵性能研究[J]. 郑州大学学报(理学版), 2018, 50(4): 39–44,49
YU Bencheng, DING Shifei. Research on entropy performance based on improved EMD algorithm[J]. Journal of Zhengzhou university (natural science edition), 2018, 50(4): 39–44,49
[18] HAYASHI T, CIMR D, FUJITA H, et al. Image entropy equalization: a novel preprocessing technique for image recognition tasks[J]. Information sciences, 2023, 647: 119539.
[19] TIAN Zhiqiang, LI Weigang, HU Junwei, et al. Joint graph entropy knowledge distillation for point cloud classification and robustness against corruptions[J]. Information sciences, 2023, 648: 119542.
[20] ZHANG Yucun, WU Zihao, LI Qun, et al. Research on point cloud simplification algorithm for ring forgings based on joint entropy evaluation[J]. Measurement science and technology, 2023, 34(12): 125203.
[21] DONG Delong, WANG Tianzhong, WANG Jinhui, et al. Study on tool wear state monitoring based on EEMD information entropy and PSO-SVM[J]. Journal of physics: conference series, 2023, 2566(1): 012111.
[22] XIONG Lijun, YUAN Haiping, LIU Gaoliang, et al. Synergetic theory of information entropy based on failure approach index for stability analysis of surrounding rock system[J]. Entropy, 2023, 25(8): 1237.
[23] DENG Hongxing, WEN Wen, ZHOU Jie. Competitiveness evaluation of express delivery enterprises based on the information entropy and gray correlation analysis[J]. Sustainability, 2023, 15(16): 12469.
[24] 崔铁军, 马云东. 基于多维空间事故树的维持系统可靠性方法研究[J]. 系统科学与数学, 2014, 34(6): 682–692
CUI Tiejun, MA Yundong. Research on the maintenance method of system reliability based on multi-dimensional space fault tree[J]. Journal of systems science and mathematical sciences, 2014, 34(6): 682–692
[25] 崔铁军, 马云东. 多维空间故障树构建及应用研究[J]. 中国安全科学学报, 2013, 23(4): 32–37,62
CUI Teijun, MA Yundong. Research on multi-dimensional space fault tree construction and application[J]. China safety science journal, 2013, 23(4): 32–37,62
[26] 何华灿. 重新找回人工智能的可解释性[J]. 智能系统学报, 2019, 14(3): 393–412
HE Huacan. Refining the interpretability of artificial intelligence[J]. CAAI transactions on intelligent systems, 2019, 14(3): 393–412
[27] 何华灿. 泛逻辑学理论: 机制主义人工智能理论的逻辑基础[J]. 智能系统学报, 2018, 13(1): 19–36
HE Huacan. Universal logic theory: logical foundation of mechanism-based artificial intelligence theory[J]. CAAI transactions on intelligent systems, 2018, 13(1): 19–36
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems