[1]ZHU Yefen,XIAN Yantuan,YU Zhengtao,et al.Joint model for Thai word segmentation and part-of-speech tagging via a local Transformer[J].CAAI Transactions on Intelligent Systems,2024,19(2):401-410.[doi:10.11992/tis.202209034]
Copy

Joint model for Thai word segmentation and part-of-speech tagging via a local Transformer

References:
[1] JOUSIMO J, LAOKULRAT N, CARR B, et al. Thai word segmentation with bi-directional RNN [EB/OL]. (2019-10-03)[2023-11-14]. https://github.com/sertiscorp.
[2] KITTINARADORN R, TITIPAT A, CHAOVAVANICH K, et al. DeepCut: A Thai word tok enization library using Deep Neural Network [EB/OL]. (2019-11-11) [2023-11-14]. http://doi.org/10.5281/zenodo.345770, accessed on.
[3] CHORMAI P, PRASERTSOM P, RUTHERFORD A. AttaCut: a fast and accurate neural Thai word segmenter [EB/OL]. (2019-12-16) [2023-11-14]. https://arxiv.org/abs/1911.07056.
[4] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE transactions on signal processing, 1997, 45(11): 2673–2681.
[5] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90.
[6] DONG Chuanhai, ZHANG Jiajun, ZONG Chengqing, et al. Character-based LSTM-CRF with radical-level features for Chinese named entity recognition[M]//Natural Language Understanding and Intelligent Applications. Cham: Springer International Publishing, 2016: 239-250.
[7] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018-11-11) [2023-11-14]. https://arxiv.org/abs/1810.04805.pdf.
[8] LAFFERTY J, MCCALLUM A, PEREIRA F. Conditional random fields: probabilistic models for segmenting and labeling sequence data [C]//Proceedings of the 18th Eighteenth International Conference on Machine Learning. Williamstown: ICML, 2001: 282–289.
[9] LIU Yinhan, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach [EB/OL]. (2019-07-26) [2023-11-14]. https://arxiv.org/abs/1907.11692.
[10] HONG T, KIM D, JI M, et al. BROS: a pre-trained language model focusing on text and layout for better key information extraction from documents[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S.l.]: AAAI, 2022: 10767-10775.
[11] ZHANG Taolin, WANG Chengyu, HU Nan, et al. DKPLM: decomposable knowledge-enhanced pre-trained language model for natural language understanding[J]. Proceedings of the AAAI Conference on Artificial Intelligence. [S.l.]: AAAI, 2022: 11703-11711.
[12] LOWPHANSIRIKUL L, POLPANUMAS C, JANTRAKULCHAI N, et al. WangchanBERTa: pretraining transformer-based Thai language models [EB/OL]. (2021-05-20) [2023-11-14]. https://arxiv.org/abs/2101.09635.
[13] NG H, LOW J K. Chinese part-of-speech tagging: one-at-a-time or all-at-once? word-based or character-based? [C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Barcelona: EMNLP, 2004: 277-284.
[14] S?GAARD A, GOLDBERG Y. Deep multi-task learning with low level tasks supervised at lower layers[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics . Berlin: Association for Computational Linguistics, 2016: 231-235.
[15] JIANG Wenbin, HUANG Liang, LIU Qun, et al. A cascaded linear model for joint Chinese word segmentation and part-of-speech tagging[C]// Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics. Columbus: [s.n.], 2008: 897-904.
[16] SUN Weiwei. A stacked sub-word model for joint Chinese word segmentation and Part-of-Speech tagging[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland: [s.n.], 2011: 1385-1394.
[17] ZENG Xiaodong, WONG D F, CHAO L S, et al. Graph-based semi-supervised model for joint Chinese word segmentation and part-of-speech tagging[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia: [s.n.], 2013: 770-779.
[18] 潘华山, 严馨, 周枫, 等. 基于层叠条件随机场的高棉语分词及词性标注方法[J]. 中文信息学报, 2016, 30(4): 110–116
PAN Huashan, YAN Xin, ZHOU Feng, et al. A Khmer word segmentation and part-of-speech tagging method based on cascaded conditional random fields[J]. Journal of Chinese information processing, 2016, 30(4): 110–116
[19] TIAN Yuanhe, SONG Yan, AO Xiang, et al. Joint Chinese word segmentation and part-of-speech tagging via two-way attentions of auto-analyzed knowledge[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle: [s.n.], 2020: 8286-8296.
[20] BUOY R, TAING N, KOR S. Joint Khmer word segmentation and part-of-speech tagging using deep learning[EB/OL]. (2021-03-31)[2022-01-01]. https://arxiv.org/abs/2103.16801.pdf.
[21] LI Y, LI Xiaomin, WANG Yiru, et al. Character-based joint word segmentation and part-of-speech tagging for Tibetan based on deep learning[J]. Transactions on Asian and low-resource language information processing, 2022: 2375-4699.
[22] YUAN Lichi. A joint method for Chinese word segmentation and part-of-speech labeling based on deep neural network[J]. Soft Computing, 2022, 26(12): 5607–5616.
[23] 林颂凯, 毛存礼, 余正涛, 等. 基于卷积神经网络的缅甸语分词方法[J]. 中文信息学报, 2018, 32(6): 62–70,79
LIN Songkai, MAO Cunli, YU Zhengtao, et al. A method of Myanmar word segmentation based on convolution neural network[J]. Journal of Chinese information processing, 2018, 32(6): 62–70,79
[24] XIANG Yan, XU Ying, YU Zhengtao, et al. CNN-based text multi-classifier using filters initialised by N-gram vector[J]. International journal of information and communication technology, 2019, 15(4): 419.
[25] 郭振, 张玉洁, 苏晨, 等. 基于字符的中文分词、词性标注和依存句法分析联合模型[J]. 中文信息学报, 2014, 28(6): 1–8
GUO Zhen, ZHANG Yujie, SU Chen, et al. Character-level dependency model for joint word segmentation, POS tagging, and dependency parsing in Chinese[J]. Journal of Chinese information processing, 2014, 28(6): 1–8
[26] 刘一佳, 车万翔, 刘挺, 等. 基于序列标注的中文分词、词性标注模型比较分析[J]. 中文信息学报, 2013, 27(4): 30–36
LIU Yijia, CHE Wanxiang, LIU Ting, et al. A comparison study of sequence labeling methods for Chinese word segmentation, POS tagging models[J]. Journal of Chinese information processing, 2013, 27(4): 30–36
[27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need [EB/OL]. (2017-06-12) [2023-01-01]. https://arxiv.org/abs/1706.03762.
[28] PHATTHIYAPHAIBUN W, CHAOVAVANICH K, POLPANUMAS C, et al. Pythainlp: Thai natural language processing in python [EB/OL]. (2022-07-03) [2023-01-01] . https://github.com/PyThaiNLP/pythainlp.
[29] UDOMCHAROENCHAIKIT C, BOONKWAN P, VATEEKUL P. Adversarial evaluation of robust neural sequential tagging methods for Thai language[J]. Transactions on Asian and low-resource language information processing. 2020: 1-25.
[30] KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. (2014-12-24) [2023-11-14]. https://arxiv.org/abs/1412.6980.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems