[1]GAO Haiyang,ZHANG Mingchuan,GE Quanbo,et al.Method of defect sample image generation based on point set matching[J].CAAI Transactions on Intelligent Systems,2023,18(5):1030-1038.[doi:10.11992/tis.202209028]
Copy

Method of defect sample image generation based on point set matching

References:
[1] 于重重, 萨良兵, 马先钦, 等. 基于度量学习的小样本零器件表面缺陷检测[J]. 仪器仪表学报, 2020, 41(7): 214-223
YU Chongchong, SA Liangbing, MA Xianqin, et al. Few-shot parts surface defect detection based on the metric learning[J]. Chinese journal of scientific instrument, 2020, 41(7): 214-223
[2] CHEN Yajun, DING Yuanyuan, ZHAO Fan, et al. Surface defect detection methods for industrial products: a review[J]. Applied sciences, 2021, 11(16): 7657.
[3] GAO Yiping, LI Xinyu, WANG X V, et al. A review on recent advances in vision-based defect recognition towards industrial intelligence[J]. Journal of manufacturing systems, 2022, 62: 753-766.
[4] 胡文杰, 吴晓波, 李波, 等. 基于Self-Attention的单样本ConSinGAN模型的工业缺陷样本图像生成[J]. 中南民族大学学报(自然科学版), 2022, 41(3): 356-364
HU Wenjie, WU Xiaobo, LI Bo, et al. Single sample image generation of industrial defect samples based on self-attention ConSinGAN[J]. Journal of south-central Minzu university (natural science edition), 2022, 41(3): 356-364
[5] KINGMA D P, WELLING M. Auto-encoding variational bayes[J]. Advances in neural information processing systems, 2014: 2002-2009.
[6] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the acm, 2020, 63(11): 139-144.
[7] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000?6010.
[8] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in neural information processing systems, 2020, 33: 6840-6851.
[9] SHI Jie, WU Chenfei, LIANG Jian, et al. Divae: Photorealistic images synthesis with denoising diffusion decoder[EB/OL].(2022?06?01)[2022?09?10]. https://arxiv.org/abs/2206.00386.
[10] RAZAVI A, VAN DEN OORD A, VINYALS O. Generating diverse high-fidelity images with vq-vae-2[J]. Advances in Neural Information Processing Systems, 2019: 14866-14876.
[11] LIU Mingyu, BREUEL T, KAUTZ J. Unsupervised image-to-image translation networks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 700?708.
[12] 余艳杰, 孙嘉琪, 葛思擘, 等. CycleGAN-SN: 结合谱归一化和CycleGAN的图像风格化算法[J]. 西安交通大学学报, 2020, 54(5): 133-141
YU Yanjie, SUN Jiaqi, GE Siqing. CycleGAN-SN: image stylization algorithm combining spectral normalization and CycleGAN[J]. Journal of Xi’an Jiaotong University, 2020, 54(5): 133-141
[13] 叶亚男, 迟静, 于志平, 等. 基于改进CycleGan模型和区域分割的表情动画合成[J]. 计算机科学, 2020, 47(9): 142-149
YE Yanan, CHI Jing, YU Zhiping, et al. Expression animation synthesis based on improved CycleGan model and region segmentation[J]. Computer science, 2020, 47(9): 142-149
[14] K?KSAL A, LU Shijian. RF-GAN: a light and reconfigurable network for unpaired image-to-image translation[C]//ISHIKAWA H, LIU C L, PAJDLA T, et al. Asian Conference on Computer Vision. Cham: Springer, 2021: 542?559.
[15] YEH R A, CHEN Chen, LIM T Y, et al. Semantic image inpainting with deep generative models[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6882?6890.
[16] YU Jiahui, LIN Zhe, YANG Jimei, et al. Generative image inpainting with contextual attention[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5505?5514.
[17] 崔克彬, 潘锋. 用于绝缘子故障检测的CycleGAN小样本库扩增方法研究[J]. 计算机工程与科学, 2022, 44(3): 509-515
CUI Kebin, PAN Feng. A CycleGAN small sample library amplification method for faulty insulator detection[J]. Computer engineering & science, 2022, 44(3): 509-515
[18] LIU Zirong, LAI Zhihui, GAO Can. Multi-scale defective samples synthesis for surface defect detection[C]//IEEE 7th International Conference on Cloud Computing and Intelligent Systems. Xi’an: IEEE, 2022: 224?229.
[19] SINGH R, GARG R, PATEL N S, et al. Generative adversarial networks for synthetic defect generation in assembly and test manufacturing[C]//31st Annual SEMI Advanced Semiconductor Manufacturing Conference. Saratoga Springs: IEEE, 2020: 1?5.
[20] YANG Benyi, LIU Zhenyu, DUAN Guifang, et al. Mask2Defect: a prior knowledge-based data augmentation method for metal surface defect inspection[J]. IEEE transactions on industrial informatics, 2022, 18(10): 6743-6755.
[21] CHOI J, KIM S, JEONG Y, et al. ILVR: Conditioning method for denoising diffusion probabilistic models[EB/OL]. (2021-08-06)[2022-09-10] . https://arxiv.org/abs/2108.02938.
[22] LUGMAYR A, DANELLJAN M, ROMERO A, et al. RePaint: inpainting using denoising diffusion probabilistic models[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11451?11461.
[23] MYRONENKO A, SONG Xubo. Point set registration: coherent point drift[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(12): 2262-2275.
[24] TANG Te, WANG Changhao, TOMIZUKA M. A framework for manipulating deformable linear objects by coherent point drift[J]. IEEE robotics and automation letters, 2018, 3(4): 3426-3433.
[25] SOTIRAS A, DAVATZIKOS C, PARAGIOS N. Deformable medical image registration: a survey[J]. IEEE transactions on medical imaging, 2013, 32(7): 1153-1190.
[26] MA Jiayi, ZHOU Huabing, ZHAO Ji, et al. Robust feature matching for remote sensing image registration via locally linear transforming[J]. IEEE transactions on geoscience and remote sensing, 2015, 53(12): 6469-6481.
[27] XU Xingpeng, MATKOWSKI W M, KONG A W K. A portrait photo-to-tattoo transform based on digital tattooing[J]. Multimedia tools and applications, 2020, 79(33): 24367-24392.
[28] BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD—a comprehensive real-world dataset for unsupervised anomaly detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 9584?9592.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems