[1]ZHAO Jia,MA Qing,XIAO Renbin,et al.Density peaks clustering based on shared nearest neighbor for manifold datasets[J].CAAI Transactions on Intelligent Systems,2023,18(4):719-730.[doi:10.11992/tis.202209026]
Copy

Density peaks clustering based on shared nearest neighbor for manifold datasets

References:
[1] SHI Tianhao, DING Shifei, XU Xiao, et al. A community detection algorithm based on Quasi-Laplacian centrality peaks clustering[J]. Applied intelligence, 2021, 51(11): 7917–7932.
[2] DINOIA A, MARTINO A, MONTANARI P, et al. Supervised machine learning techniques and genetic optimization for occupational diseases risk prediction[J]. Soft computing, 2020, 24(6): 4393–4406.
[3] BUCZAK A L, GUVEN E. A survey of data mining and machine learning methods for cyber security intrusion detection[J]. IEEE communications surveys & tutorials, 2015, 18(2): 1153–1176.
[4] YAN Xiaoqiang. Synergetic information bottleneck for joint multi-view and ensemble clustering[J]. Information fusion, 2020, 56: 15–27.
[5] GAO Miao. Ship-handling behavior pattern recognition using AIS sub-trajectory clustering analysis based on the T-SNE and spectral clustering algorithms[J]. Ocean engineering, 2020, 205: 106919.
[6] 陈叶旺, 申莲莲, 钟才明, 等. 密度峰值聚类算法综述[J]. 计算机研究与发展, 2020, 57(2): 378–394
CHEN Yewang , SHEN Lianlian, ZHONG Caiming, et al. A review of density peak clustering algorithms[J]. Journal of computer research and development, 2020, 57(2): 378–394
[7] SUN Lin, QIN Xiaoying, DING Weiping, et al. Density peaks clustering based on k-nearest neighbors and self-recommendation[J]. International journal of machine learning and cybernetics, 2021, 12(7): 1913–1938.
[8] XIA Shuyin, PENG Daowan, MENG Deyu, et al. Ball k-means: fast adaptive clustering with No bounds[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(1): 87–99.
[9] BU Fanyu, ZHANG Qingchen, YANG L T, et al. An edge-cloud-aided high-order possibilistic c-means algorithm for big data clustering[J]. IEEE transactions on fuzzy systems, 2020, 28(12): 3100–3109.
[10] DING Jiajun, HE Xiongxiong, YUAN Junqing, et al. Automatic clustering based on density peak detection using generalized extreme value distribution[J]. Soft computing-A fusion of foundations, methodologies and applications, 2018, 22(9): 2777–2796.
[11] ABE K, MINOURA K, MAEDA Y, et al. Model-based clustering for flow and mass cytometry data with clinical information[J]. BMC bioinformatics, 2020, 21(suppl 13): 393.
[12] CHEUNG Y M, ZHANG Yiqun. Fast and accurate hierarchical clustering based on growing multilayer topology training[J]. IEEE transactions on neural networks and learning systems, 2019, 30(3): 876–890.
[13] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. New York: ACM, 1996: 226–231.
[14] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492–1496.
[15] XIE Juanying. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Information sciences, 2016, 354: 19–40.
[16] DU Mingjing, DING Shifei, XUE Yu. A robust density peaks clustering algorithm using fuzzy neighborhood[J]. International journal of machine learning and cybernetics, 2018, 9(7): 1131–1140.
[17] ZHAO Jia, TANG Jingjing, SHI Aiye, et al. Improved density peaks clustering based on firefly algorithm[J]. International journal of bio-inspired computation, 2020, 15(1): 24–42.
[18] XU Xiao, DING Shifei, XU Hui, et al. A feasible density peaks clustering algorithm with a merging strategy[J]. Soft computing, 2019, 23(13): 5171–5183.
[19] YU Donghua, LIU Guojun, GUO Maozu, et al. Density peaks clustering based on weighted local density sequence and nearest neighbor assignment[J]. IEEE access, 2019, 7: 34301–34317.
[20] XU Lizhong, ZHAO Jia, YAO Zhanfeng, et al. Density peak clustering based on cumulative nearest neighbors degree and micro cluster merging[J]. Journal of signal processing systems, 2019, 91(10): 1219–1236.
[21] 赵嘉, 姚占峰, 吕莉, 等. 基于相互邻近度的密度峰值聚类算法[J]. 控制与决策, 2021, 36(3): 543–552
ZHAO Jia, YAO Zhanfeng, LYU Li, at el. Density peaks clustering based on mutual neighbor degree[J]. Control and decision, 2021, 36(3): 543–552
[22] DU Mingjing, DING Shifei, XU Xiao, et al. Density peaks clustering using geodesic distances[J]. International journal of machine learning and cybernetics, 2018, 9(8): 1335–1349.
[23] VINH N X, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance[J]. Journal of machine learning research, 2010, 11: 2837–2854.
[24] FOWLKES E B, MALLOWS C L. A method for comparing two hierarchical clusterings[J]. Journal of the American statistical association, 1983, 78(383): 553–569.
[25] LICHMAN M. UCI machine learning repository[EB/OL]. (2018-09-24)[2022-09-15].http://archive.ics.uci.edu/ml.
[26] SAMARIA F S, HARTER A C. Parameterisation of a stochastic model for human face identification[C]//Proceedings of 1994 IEEE Workshop on Applications of Computer Vision. Piscataway: IEEE, 2002: 138?142.
[27] 肖人彬. 面向复杂系统的群集智能[M]. 北京: 科学出版社, 2013.
[28] 肖人彬, 冯振辉, 王甲海. 群体智能的概念辨析与研究进展及应用分析[J]. 南昌工程学院学报, 2022, 41(1): 1–21
XIAO Renbin, FENG Zhenhui, WANG Jiahai. Collective intelligence: conception, research progresses and application analyses[J]. Journal of Nanchang Institute of Technology, 2022, 41(1): 1–21
[29] 肖人彬, 陈峙臻. 从群智能优化到群智能进化[J]. 南昌工程学院学报, 2023, 42(1): 1–10
XIAO Renbin, CHEN Zhizhen. From swarm intelligence optimization to swarm intelligence evolution[J]. Journal of Nanchang Institute of Technology, 2023, 42(1): 1–10
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems