[1]LU Bin,SUN Yang,YANG Zhenyu.3D object detection algorithm with voxel graph attention[J].CAAI Transactions on Intelligent Systems,2024,19(3):598-609.[doi:10.11992/tis.202209008]
Copy

3D object detection algorithm with voxel graph attention

References:
[1] 郭毅锋, 吴帝浩, 魏青民. 基于深度学习的点云三维目标检测方法综述[J]. 计算机应用研究, 2023, 40(1): 20–27
GUO Yifeng, WU Dihao, WEI Qingmin. Overview of single-sensor and multi-sensor point cloud 3D target detection methods[J]. Application research of computers, 2023, 40(1): 20–27
[2] CHARLES R Q, HAO Su, MO Kaichun, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 77–85.
[3] CHARLES R Q, YI Li, SU Hao, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 5105–5114.
[4] ZHOU Yin, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4490–4499.
[5] SHI Shaoshuai, WANG Xiaogang, LI Hongsheng. PointRCNN: 3D object proposal generation and detection from point cloud[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 770–779.
[6] YANG Zetong, SUN Yanan, LIU Shu, et al. 3DSSD: point-based 3D single stage object detector[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11037–11045.
[7] HE Chenhang, ZENG Hui, HUANG Jianqiang, et al. Structure aware single-stage 3D object detection from point cloud[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11870–11879.
[8] ZHENG Wu, TANG Weiliang, JIANG Li, et al. SE-SSD: self-ensembling single-stage object detector from point cloud[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 14489–4498.
[9] XU Qiangeng, ZHONG Yiqi, NEUMANN U. Behind the curtain: learning occluded shapes for 3D object detection[J]. Proceedings of the AAAI conference on artificial intelligence, 2022, 36(3): 2893–2901.
[10] SHI Shaoshuai, GUO Chaoxu, JIANG Li, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10526–10535.
[11] DENG Jiajun, SHI Shaoshuai, LI Peiwei, et al. Voxel R-CNN: towards high performance voxel-based 3D object detection[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(2): 1201–1209.
[12] MAO Jiageng, NIU Minzhe, BAI Haoyue, et al. Pyramid R-CNN: towards better performance and adaptability for 3D object detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 2703–2712.
[13] SHENGA Hualian, CAI Sijia, LIU Yuan, et al. Improving 3D object detection with channel-wise transformer[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 2723–2732.
[14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2017–06–12)[2022–09–06]. http://arxiv.org/abs/1706.03762.
[15] SHI Weijing, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1708-1716.
[16] 王亚东, 田永林, 李国强, 等. 基于卷积神经网络的三维目标检测研究综述[J]. 模式识别与人工智能, 2021, 34(12): 1103–1119
WANG Yadong, TIAN Yonglin, LI Guoqiang, et al. 3D object detection based on convolutional neural networks: a survey[J]. Pattern recognition and artificial intelligence, 2021, 34(12): 1103–1119
[17] ZHANG Yifan, HU Qingyong, XU Guoquan, et al. Not all points are equal: learning highly efficient point-based detectors for 3D LiDAR point clouds[EB/OL]. (2022–03–21) [2022–09–06]. http://arxiv.org/abs/2203.11139.
[18] PAN Xuran, XIA Zhuofan, SONG Shiji, et al. 3D object detection with pointformer[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 7459–7468.
[19] YAN Yan, MAO Yuxing, LI Bo. SECOND: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
[20] LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 12689–12697.
[21] ZHENG Wu, TANG Weiliang, CHEN Sijin, et al. CIA-SSD: confident IoU-aware single-stage object detector from point cloud[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(4): 3555–3562.
[22] KUANG Hongwu, WANG Bei, AN Jianping, et al. Voxel-FPN: multi-scale voxel feature aggregation for 3D object detection from LIDAR point clouds[J]. Sensors, 2020, 20(3): 704.
[23] 李文举, 储王慧, 崔柳, 等. 结合图采样和图注意力的3D目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 237–244
LI Wenju, CHU Wanghui, CUI Liu, et al. 3D object detection method combining on graph sampling and graph attention[J]. Computer engineering and applications, 2023, 59(9): 237–244
[24] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Sardinia: JMLR Workshop and Conference Proceedings, 2010: 249–256.
[25] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999–3007.
[26] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 3354–3361.
[27] CHEN Xiaozhi, KUNDU K, ZHU Yukun, et al. 3D object proposals for accurate object class detection[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 1. Montreal: ACM, 2015: 424–432.
[28] CHEN Xiaozhi, MA Huimin, WAN Ji, et al. Multi-view 3D object detection network for autonomous driving[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6526–6534.
[29] KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation and object detection from view aggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: ACM, 2018: 1–8.
[30] QI C R, LIU Wei, WU Chenxia, et al. Frustum PointNets for 3D object detection from RGB-D data[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 918–927.
[31] LIANG Ming, YANG Bin, WANG Shenlong, et al. Deep continuous fusion for multi-sensor 3D object detection[C]//European Conference on Computer Vision. Cham: Springer, 2018: 663–678.
[32] ZHAO Xin, LIU Zhe, HU Ruolan, et al. 3D object detection using scale invariant and feature reweighting networks[J]. Proceedings of the AAAI conference on artificial intelligence, 2019, 33(1): 9267–9274.
[33] LIANG Ming, YANG Bin, CHEN Yun, et al. Multi-task multi-sensor fusion for 3D object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7337–7345.
[34] YOO J H, KIM Y, KIM J, et al. 3D-CVF: generating joint camera and LiDAR features using cross-view spatial feature fusion for 3D object detection[C]//European Conference on Computer Vision. Cham: Springer, 2020: 720–736.
[35] YANG Zetong, SUN Yanan, LIU Shu, et al. STD: sparse-to-dense 3D object detector for point cloud[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1951–1960.
[36] LEHNER J, MITTERECKER A, ADLER T, et al. Patch refinement: localized 3D object detection[EB/OL]. (2019–10–09)[2022–09–06]. http://arxiv.org/abs/1910.04093.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems