[1]SHI Jiarong,HE Pan.Broad collaborative filtering recommendation algorithm combined with matrix completion[J].CAAI Transactions on Intelligent Systems,2024,19(2):299-306.[doi:10.11992/tis.202209005]
Copy

Broad collaborative filtering recommendation algorithm combined with matrix completion

References:
[1] SINGH N, SINGH D P, PANT B. Big data knowledge discovery as a service: recent trends and challenges[J]. Wireless personal communications, 2022, 123(2): 1789–1807.
[2] GUPTA S, DAVE M. An overview of recommendation system: methods and techniques[M]//Advances in Computing and Intelligent Systems. Singapore: Springer Singapore, 2020: 231-237.
[3] ASSUNCAO W G, PICCOLO L S G, ZAINA L A M. Considering emotions and contextual factors in music recommendation: a systematic literature review[J]. Multimedia tools and applications, 2022, 81(6): 8367–8407.
[4] LI Xiangpo. Research on the application of collaborative filtering algorithm in mobile E-commerce recommendation system[C]//2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers. Dalian: IEEE, 2021: 924-926.
[5] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30–37.
[6] 胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1): 1–19
HU Yue, LUO Dongyang, HUA Kui, et al. Overview on deep learning[J]. CAAI transactions on intelligent systems, 2019, 14(1): 1–19
[7] WANG Changdong, XI Wudong, HUANG Ling, et al. A BP neural network based recommender framework with attention mechanism[J]. IEEE transactions on knowledge and data engineering, 2022, 34(7): 3029–3043.
[8] XI Wudong, HUANG Ling, WANG Changdong, et al. BPAM: recommendation based on BP neural network with attention mechanism[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence Organization, 2019: 3905–3911.
[9] DENG Zhihong, HUANG Ling, WANG Changdong, et al. DeepCF: a unified framework of representation learning and matching function learning in recommender system[EB/OL]. (2019-01-15)[2022-01-01]. http://arxiv.org/abs/1901.04704V1.
[10] HE Xiangnan, LIAO Lizi, ZHANG Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 173-182.
[11] XUE Hongjian, DAI Xinyu, ZHANG Jianbing, et al. Deep matrix factorization models for recommender systems[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne: International Joint Conferences on Artificial Intelligence Organization, 2017: 3203-3209.
[12] YIN Hongzhi, WANG Qinyong, ZHENG Kai, et al. Overcoming data sparsity in group recommendation[J]. IEEE transactions on knowledge and data engineering, 2022, 34(7): 3447–3460.
[13] HUANG Ling, GUAN Canrong, HUANG Zhengwei, et al. Broad recommender system: an efficient nonlinear collaborative filtering approach[EB/OL]. (2022-04-20)[2022-08-29]. https://ar-xiv.org/pdf/2204.11602.pdf.
[14] PHILIP CHEN C L, LIU Zhulin. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE transactions on neural networks and learning systems, 2018, 29(1): 10–24.
[15] FLETCHER K K. A method for dealing with data sparsity and cold-start limitations in service recommendation using personalized preferences[C]//2017 IEEE International Conference on Cognitive Computing. Honolulu: IEEE, 2017: 72-79.
[16] CANDES E J, RECHT B. Exact low-rank matrix completion via convex optimization[C]//2008 46th Annual Allerton Conference on Communication, Control, and Computing. Monticello: IEEE, 2009: 806-812.
[17] 陈蕾, 陈松灿. 矩阵补全模型及其算法研究综述[J]. 软件学报, 2017, 28(6): 1547–1564
CHEN Lei, CHEN Songcan. Survey on matrix completion models and algorithms[J]. Journal of software, 2017, 28(6): 1547–1564
[18] WANG Weigang, SONG Wei, WANG Guangyuan, et al. Image recovery and recognition: a combining method of matrix norm regularisation[J]. IET image processing, 2019, 13(8): 1246–1253.
[19] CHEN Zhaoliang, WANG Shiping. A review on matrix completion for recommender systems[J]. Knowledge and information systems, 2022, 64(1): 1–34.
[20] LIN Zhouchen, CHEN Minming, MA Yi. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL]. (2010-09-26)[2022-08-29]. https://arxiv.org/abs/1009.5055.pdf.
[21] BIOUCAS-DIAS J M, FIGUEIREDO M A T. A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE transactions on image processing, 2007, 16(12): 2992–3004.
[22] PAO Y H, PARK G H, SOBAJIC D J. Learning and generalization characteristics of the random vector functional-link net[J]. Neurocomputing, 1994, 6(2): 163–180.
[23] YANG Qing, GU Yudi, WU Dongsheng. Survey of incremental learning[C]//2019 Chinese Control and Decision Conference. Nanchang: IEEE, 2019: 399-404.
[24] SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2008: 1257-1264.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems