[1]CHEN Zhipeng,ZHANG Yong,GAO Hairong,et al.Integrated energy multivariate load forecasting combining federated learning with LSTM in privacy-protected and low-data environments[J].CAAI Transactions on Intelligent Systems,2024,19(3):565-574.[doi:10.11992/tis.202208049]
Copy

Integrated energy multivariate load forecasting combining federated learning with LSTM in privacy-protected and low-data environments

References:
[1] 贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39(7): 198–207
JIA Hongjie, WANG Dan, XU Xiandong, et al. Research on some key problems related to integrated energy systems[J]. Automation of electric power systems, 2015, 39(7): 198–207
[2] INFIELD D G, HILL D C. Optimal smoothing for trend removal in short term electricity demand forecasting[J]. IEEE transactions on power systems, 1998, 13(3): 1115–1120.
[3] LI Yiyan, HAN Dong, YAN Zheng. Long-term system load forecasting based on data-driven linear clustering method[J]. Journal of modern power systems and clean energy, 2018, 6(2): 306–316.
[4] JIN Min, ZHOU Xiang, ZHANG Z M, et al. Short-term power load forecasting using grey correlation contest modeling[J]. Expert systems with applications, 2012, 39(1): 773–779.
[5] 高亚静, 孙永健, 杨文海, 等. 基于新型人体舒适度的气象敏感负荷短期预测研究[J]. 中国电机工程学报, 2017, 37(7): 1946–1955
GAO Yajing, SUN Yongjian, YANG Wenhai, et al. Weather-sensitive load’s short-term forecasting research based on new human body amenity indicator[J]. Proceedings of the CSEE, 2017, 37(7): 1946–1955
[6] PANDEY A S, SINGH D, SINHA S K. Intelligent hybrid wavelet models for short-term load forecasting[J]. IEEE transactions on power systems, 2010, 25(3): 1266–1273.
[7] 曾鸣, 吕春泉, 田廓, 等. 基于细菌群落趋药性优化的最小二乘支持向量机短期负荷预测方法[J]. 中国电机工程学报, 2011, 31(34): 93–99,11
ZENG Ming, LYU Chunquan, TIAN Kuo, et al. Least squares-support vector machine load forecasting approach optimized by bacterial colony chemotaxis method[J]. Proceedings of the CSEE, 2011, 31(34): 93–99,11
[8] 张素香, 赵丙镇, 王风雨, 等. 海量数据下的电力负荷短期预测[J]. 中国电机工程学报, 2015, 35(1): 37–42
ZHANG Suxiang, ZHAO Bingzhen, WANG Fengyu, et al. Short-term power load forecasting based on big data[J]. Proceedings of the CSEE, 2015, 35(1): 37–42
[9] SAFTA C, CHEN R L Y, NAJM H N, et al. Efficient uncertainty quantification in stochastic economic dispatch[J]. IEEE transactions on power systems, 2017, 32(4): 2535–2546.
[10] CHENG Lilin, ZANG Haixiang, DING Tao, et al. Multi-meteorological-factor-based graph modeling for photovoltaic power forecasting[J]. IEEE transactions on sustainable energy, 2021, 12(3): 1593–1603.
[11] HE Feifei, ZHOU Jianzhong, FENG Zhongkai, et al. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm[J]. Applied energy, 2019, 237: 103–116.
[12] POTO?NIK P, ?KERL P, GOVEKAR E. Machine-learning-based multi-step heat demand forecasting in a district heating system[J]. Energy and buildings, 2021, 233: 110673.
[13] SIMON Haykin. 神经网络原理[M]. 叶世伟, 史忠植, 译. 北京: 机械工业出版社, 2004.
[14] CAO Jian, LI Zhi, LI Jian. Financial time series forecasting model based on CEEMDAN and LSTM[J]. Physica A:statistical mechanics and its applications, 2019, 519: 127–139.
[15] MUZAFFAR S, AFSHARI A. Short-term load forecasts using LSTM networks[J]. Energy procedia, 2019, 158: 2922–2927.
[16] 李鹏, 何帅, 韩鹏飞, 等. 基于长短期记忆的实时电价条件下智能电网短期负荷预测[J]. 电网技术, 2018, 42(12): 4045–4052
LI Peng, HE Shuai, HAN Pengfei, et al. Short-term load forecasting of smart grid based on long-short-term memory recurrent neural networks in condition of real-time electricity price[J]. Power system technology, 2018, 42(12): 4045–4052
[17] SOMU N, RAMAN M R G, RAMAMRITHAM K. A deep learning framework for building energy consumption forecast[J]. Renewable and sustainable energy reviews, 2021, 137: 110591.
[18] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. (2016–02–17)[2022–08–30]. https://arxiv.org/abs/1602.05629.
[19] 杨强. 联邦学习: 人工智能的最后一公里[J]. 智能系统学报, 2020, 15(1): 183–186
YANG Qiang. Federated learning: the last on kilometer of artificial intelligence[J]. CAAI transactions on intelligent systems, 2020, 15(1): 183–186
[20] BRISIMI T S, CHEN Ruidi, MELA T, et al. Federated learning of predictive models from federated Electronic Health Records[J]. International journal of medical informatics, 2018, 112: 59–67.
[21] SUBRAMANYA T, RIGGIO R. Centralized and federated learning for predictive VNF autoscaling in multi-domain 5G networks and beyond[J]. IEEE transactions on network and service management, 2021, 18(1): 63–78.
[22] WU Xing, LIANG Zhaowang, WANG Jianjia. FedMed: a federated learning framework for language modeling[J]. Sensors, 2020, 20(14): 4048.
[23] HUA Gaofeng, ZHU Li, WU Jinsong, et al. Blockchain-based federated learning for intelligent control in heavy haul railway[J]. IEEE access, 2020, 8: 176830–176839.
[24] SAVI M, OLIVADESE F. Short-term energy consumption forecasting at the edge: a federated learning approach[J]. IEEE access, 2021, 9: 95949–95969.
[25] CHEN Yujing, NING Yue, CHAI Zheng, et al. Federated multi-task learning with hierarchical attention for sensor data analytics[C]//2020 International Joint Conference on Neural Networks. Glasgow: IEEE, 2020: 1–8.
[26] 王鑫, 周泽宝, 余芸, 等. 一种面向电能量数据的联邦学习可靠性激励机制[J]. 计算机科学, 2022, 49(3): 31–38
WANG Xin, ZHOU Zebao, YU Yun, et al. Reliable incentive mechanism for federated learning of electric metering data[J]. Computer science, 2022, 49(3): 31–38
[27] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735–1780.
[28] 刘旭红. 高效安全向量计算及其推广[J]. 软件学报, 2021, 32(11): 3628–3645
LIU Xuhong. Efficient secure vector computation and its extension[J]. Journal of software, 2021, 32(11): 3628–3645
[29] 燕忠毅, 曾艳, 赵乃良, 等. 一种基于二阶导数解决联邦学习中数据不平衡问题的方法: CN113691594A[P]. 2021–11–23.
YAN Zhongyi, ZENG Yan, ZHAO Nailiang, et al. Method for solving data imbalance problem in federated learning based on second derivative: CN113691594A[P]. 2021–11–23.
[30] 刘叶. 数据不平衡的联邦学习方法研究[D]. 北京: 北京邮电大学, 2021.
LIU Ye. Research on federatedlearning methods for unbalanced data[D]. Beijing: Beijing University of Posts and Telecommunications, 2021.
[31] 孙庆凯, 王小君, 张义志, 等. 基于LSTM和多任务学习的综合能源系统多元负荷预测[J]. 电力系统自动化, 2021, 45(5): 63–70
SUN Qingkai, WANG Xiaojun, ZHANG Yizhi, et al. Multiple load prediction of integrated energy system based on long short-term memory and multi-task learning[J]. Automation of electric power systems, 2021, 45(5): 63–70
[32] PENG Chao, TAO Yifan, CHEN Zhipeng, et al. Multi-source transfer learning guided ensemble LSTM for building multi-load forecasting[J]. Expert systems with applications, 2022, 202: 117194.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems