[1]GUO Lingli,CHEN Xiuhong.Robust unsupervised feature selection via multistep Markov probability and latent representation[J].CAAI Transactions on Intelligent Systems,2023,18(5):1017-1029.[doi:10.11992/tis.202208013]
Copy

Robust unsupervised feature selection via multistep Markov probability and latent representation

References:
[1] BRUNETTI A, BUONGIORNO D, TROTTA G F, et al. Computer vision and deep learning techniques for pedestrian detection and tracking: a survey[J]. Neurocomputing, 2018, 300: 17-33.
[2] JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[3] LI H, HE X, TAO D, et al. Joint medical image fusion, denoising and enhancement via discriminative low-rank sparse dictionaries learning[J]. Pattern recognition, 2018, 79: 130-146.
[4] QURESHI R, UZAIR M, KHURSHID K, et al. Hyperspectral document image processing: applications, challenges and future prospects[J]. Pattern recognition, 2019, 90: 12-22.
[5] VADIM K. Overview of different approaches to solving problems of data mining[J]. Procedia computers, 2018, 123: 234-239.
[6] PENG H C, LONG F H, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(8): 1226-1238.
[7] 朱星宇, 陈秀宏. 联合不相关回归和非负谱分析的无监督特征选择[J]. 智能系统学报, 2022, 17(2): 303-313
ZHU X Y, CHEN X H. Joint uncorrelated regression and non-negative spectral analysis for unsupervised feature selection[J]. CAAI Transactions on Intelligent Systems, 2022, 17(2): 303-313
[8] 白圣子, 降爱莲. 基于特征正则稀疏关联的无监督特征选择方法[J]. 计算机工程与设计, 2022, 43(04): 969-976
BAI S Z, JIANG A L. Unsupervised feature selection method based on feature regularized sparse association[J]. Computer engineering and eesign, 2022, 43(04): 969-976
[9] PENG C, GAO X, WANG N, et al. Face recognition from multiple stylistic sketches: scenarios, datasets, and evaluation[J]. Pattern recognition, 2018, 84: 262-272.
[10] FU Y, YAN S, HUANG T S. Correlation metric for generalized feature extraction[J]. IEEE transactions on pattern analysis and machine intelligence, 2008, 30(12): 2229-2235.
[11] JAIN A, ZONGKER D. Feature selection: Evaluation, application, and small sample performance[J]. IEEE transactions on pattern analysis and machine intelligence, 1997, 19(2): 153-158.
[12] ZHAO J D, LU K, HE X F. Locality sensitive semi-supervised feature selection[J]. Neurocomputing, 2008, 71(10-12): 1842-1849.
[13] HOU C P, NIE F P, LI X L, et al. Joint embedding learning and sparse regression: a framework for unsupervised feature selection[J]. IEEE transactions on cybernetics, 2014, 44(6): 793-804.
[14] HE X F, CAI D, NIYOGI P. Laplacian Score for feature selection[C]//Advances in Neural Information Processing Systems. Vancouver: NIPS, 2005: 507?514.
[15] TABAKHI S, MORADI P, AKHLAGHIAN F. An unsupervised feature selection algorithm based on ant colony optimization[J]. Engineering applications of artificial intelligence, 2014, 32: 112-123.
[16] CAI D, ZHANG C Y, HE X F. Unsupervised feature selection for multi-cluster data[C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, DC: ACM, 2010, 333?342.
[17] NIE F P, WANG X Q, HUANG H. Clustering and projected clustering with adaptive neighbors[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Arlington: ACM, 2014: 977?986.
[18] MOHSENZADEH Y, SHEIKHZADEH H, Reza A M, et al. The relevance sample-feature machine: A sparse bayesian learning approach to joint feature-sample selection[J]. IEEE transactions on cybernetics, 2014, 43(6): 2241-2254.
[19] ZHU P F, ZUO W M, ZHANG L, et al. Unsupervised feature selection by regularized self-representation[J]. Pattern recognition, 2015, 48(2): 438-446.
[20] NIE F P, ZHU W, LI X L. Unsupervised feature selection with structured graph optimization[C]// Proceedings of Thirtieth AAAI Conference on Artificial Intelligence. Phoenix: AAAI Press, 2016: 1302?1308.
[21] LI X L, ZHANG H, ZHANG R, et al. Generalized uncorrelated regression with adaptive graph for unsupervised feature selection[J]. IEEE transactions on neural network and learning systems, 2019, 30(5): 1587-1595.
[22] MIN Y, YE M, TIAN L, et al. Unsupervised feature selection via multi-step Markov probability relationship[J]. Neurocomputing, 2021, 453: 241-253.
[23] SZUMMER M, JAAKKOLA T. Partially labeled classification with markov random walks[C]//Proceedings of the 14th International Conference on Neural Information Processing System: Natural and Synthetic. Cambridge: MIT Press, 2001, 945?952.
[24] CAI J F, CANDES E J, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM journal on optimization, 2010, 20(4): 1956-1982.
[25] HE Z S, XIE S L, ZDUNEK R, et al. Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering[J]. IEEE transactions on neural networks, 2011, 22(12): 2117-2131.
[26] 徐慧敏, 陈秀宏. 图正则化稀疏判别非负矩阵分解[J]. 智能系统学报, 2019, 14(6): 1217-1224
XU H M, CHEN X H. Graph-regularized, sparse discriminant, non-negative matrix factorization[J]. CAAI Transactions on Intelligent Systems, 2019, 14(6): 1217-1224
[27] KUANG D, DING C, PARK H. Symmetric nonnegative matrix factorization for graph clustering[C]// Proceedings of the SIAM International Conference on Data Mining. Anaheim: SDM, 2012, 1(2): 106?117.
[28] BOYD S, PARIKH N, ERIC C, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and trends in machine learning, 2010, 3(1): 1-122.
[29] LONG B, ZHANG Z, YU P S. Co-clustering by block value decomposition[C]// Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago: ACM, 2005: 635?640.
[30] LANGE K, HUNTER D R, YANG L. Optimization transfer using surrogate objective functions[J]. Journal of computational and graphical statistics, 2000, 9(1): 1-20.
[31] SAMARIA F S, HARTER A C. Parameterisation of a stochastic model for human face identification[C]// Proceedings of 1994 IEEE Workshop on Applications of Computer Vision. Sarasota: IEEE, 1994, 138?142.
[32] RATE C, RETRIEVAL C. Columbia object image library(COIL-20)[EB/OL]. (2011?12?12)[2020?01?01]. http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
[33] HULL J. A database for handwritten text recognition research[J]. IEEE transactions on pattern analysis and machine intelligence, 1994, 16(5): 550-554.
[34] FANTY M A, COLE R A. Spoken Letter Recognition[C]// Advances in Neural Information Processing Systems. Stroudsburg: Association for Computational Linguistics, 1990, 220?226.
[35] BHATTACHARJEE A, RICHARDS W G, STAUNTON J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24): 13790-13795.
[36] HASLINGER C, SCHWEIFER N, STILGENBAUER S, et al. Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status[J]. Journal of clinical oncology, 2004, 22(19): 3937-49.
[37] TANG C, BIAN M, LIU X W, et al. Unsupervised feature selection via latent representation learning and manifold regularization[J]. Neural network, 2019, 117: 163-17.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems