[1]YANG Zhengli,WU Fuyun,CHEN Haixia.Fault identification of multi-feature boiler tube acoustic signal based on deep residual shrinkage network[J].CAAI Transactions on Intelligent Systems,2023,18(5):1108-1116.[doi:10.11992/tis.202207012]
Copy

Fault identification of multi-feature boiler tube acoustic signal based on deep residual shrinkage network

References:
[1] 何俊松. 炉管泄漏自动报警装置的技术改造[J]. 广西电力, 2018, 41(1): 63-66
HE Junsong. Technical modification of automatic warning system of boiler pipe leakage[J]. Guangxi electric power, 2018, 41(1): 63-66
[2] OH H, JUNG J H, JEON B C, et al. Scalable and unsupervised feature engineering using vibration-imaging and deep learning for rotor system diagnosis[J]. IEEE transactions on industrial electronics, 2018, 65(4): 3539-3549.
[3] BOU-GHAZALE S E, HANSEN J H L. A comparative study of traditional and newly proposed features for recognition of speech under stress[J]. IEEE transactions on speech and audio processing, 2000, 8(4): 429-442.
[4] LAUKKA P, NEIBERG D, FORSELL M, et al. Expression of affect in spontaneous speech: acoustic correlates and automatic detection of irritation and resignation[J]. Computer speech & language, 2011, 25(1): 84-104.
[5] HSIAO P W, CHEN C P. Effective attention mechanism in dynamic models for speech emotion recognition[C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary: IEEE, 2018: 2526?2530.
[6] LIU Ruonan, YANG Boyuan, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: a review[J]. Mechanical systems and signal processing, 2018, 108: 33-47.
[7] HAN Zhiyan, WANG Jian. Speech emotion recognition based on Gaussian kernel nonlinear proximal support vector machine[C]//2017 Chinese Automation Congress. Jinan: IEEE, 2018: 2513?2516.
[8] LI Yifan, LIANG Xihui, LIN Jianhui, et al. Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter[J]. Mechanical systems and signal processing, 2018, 101: 435-448.
[9] 胡德生, 张雪英, 张静, 等. 基于主辅网络特征融合的语音情感识别[J]. 太原理工大学学报, 2021, 52(5): 769-774
HU Desheng, ZHANG Xueying, ZHANG Jing, et al. Feature fusion based on main-auxiliary network for speech emotion recognition[J]. Journal of Taiyuan University of Technology, 2021, 52(5): 769-774
[10] KIM J, SAUROUS R A. Emotion recognition from human speech using temporal information and deep learning[C]//Proc Interspeech 2018. Hyderabad: ISCA, 2018: 937?940.
[11] 胡康, 何思宇, 左敏, 等. 基于CNN-BLSTM的化妆品违法违规行为分类模型[J]. 智能系统学报, 2021, 16(6): 1151-1157
HU Kang, HE Siyu, ZUO Min, et al. Classification model for judging illegal and irregular behavior for cosmetics based on CNN-BLSTM[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1151-1157
[12] 刘威, 王薪予, 刘光伟, 等. 融合关系特征的半监督图像分类方法研究[J]. 智能系统学报, 2022, 17(5): 886-899
LIU Wei, WANG Xinyu, LIU Guangwei, et al. Semi-supervised image classification method fused with relational features[J]. CAAI transactions on intelligent systems, 2022, 17(5): 886-899
[13] 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2022, 17(1): 16-31
SU Li, SUN Yuxin, YUAN Shouzheng. A survey of instance segmentation research based on deep learning[J]. CAAI transactions on intelligent systems, 2022, 17(1): 16-31
[14] 胡海华, 韩国军, 张孝谊. 基于卷积神经网络的闪存信道检测技术研究[J]. 智能系统学报, 2021, 16(6): 1090-1097
HU Haihua, HAN Guojun, ZHANG Xiaoyi. Research on flash memory channel detection technology based on convolutional neural network[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1090-1097
[15] 潘国壮. 基于实时陆空通话情感识别的管制员疲劳状态快速监测研究[D]. 南京: 南京航空航天大学, 2020.
PAN Guozhuang. Research on rapid monitoring of air traffic controller’s fatigue state based on real-time emotion recognition of land-air communication[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
[16] FARHOUDI Z, SETAYESHI S. Fusion of deep learning features with mixture of brain emotional learning for audio-visual emotion recognition[J]. Speech communication, 2021, 127: 92-103.
[17] 李瑞航, 吴红兰, 孙有朝, 等. 基于深度残差收缩网络多特征融合语音情感识别[J]. 数据采集与处理, 2022, 37(3): 542-554
LI Ruihang, WU Honglan, SUN Youchao, et al. Speech emotion recognition base on multi-feature fusion of deep residual shrinkage network[J]. Journal of data acquisition and processing, 2022, 37(3): 542-554
[18] DANGOL R, ALSADOON A, PRASAD P W C, et al. Speech emotion recognition using convolutional neural network and long-short term memory[J]. Multimedia tools and applications, 2020, 79(43/44): 32917-32934.
[19] 胡婷婷, 冯亚琴, 沈凌洁, 等. 基于注意力机制的LSTM语音情感主要特征选择[J]. 声学技术, 2019, 38(4): 414-421
HU Tingting, FENG Yaqin, SHEN Lingjie, et al. The salient feature selection by attention mechanism based LSTM in speech emotion recognition[J]. Technical acoustics, 2019, 38(4): 414-421
[20] 姜特, 陈志刚, 万永菁. 基于注意力机制的多任务3D CNN-BLSTM情感语音识别[J]. 华东理工大学学报(自然科学版), 2022, 48(4): 534-542
JIANG Te, CHEN Zhigang, WAN Yongjing. Multi-task learning 3D CNN-BLSTM with attention mechanism for speech emotion recognition[J]. Journal of East China University of Science and Technology(natural science edition), 2022, 48(4): 534-542
[21] GAO Zehai, MA Cunbao, SONG Dong, et al. Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis[J]. Neurocomputing, 2017, 238: 13-23.
[22] SOHAIB M, KIM C H, KIM J M. A hybrid feature model and deep-learning-based bearing fault diagnosis[J]. Sensors (Basel, Switzerland), 2017, 17(12): 2876.
[23] GUPTA A, ANJUM, GUPTA S, et al. InstaCovNet-19: A deep learning classification model for the detection of COVID-19 patients using Chest X-ray[J]. Applied soft computing, 2020, 99: 1-13.
[24] 陈捷, 陆云. 2016年度上海并网发电厂发电锅炉“四管”泄漏统计及案例分析[J]. 电力与能源, 2017, 38(2): 170-175
CHEN Jie, LU Yun. Statistics and case analysis of Shanghai grid plant power boiler four-tube leakages in 2016[J]. Power & energy, 2017, 38(2): 170-175
[25] WANG Tao, PEI Yu, XIAO Huiheng, et al. Detection of small gas leaks based on neural networks and D-S evidential theory using ultrasonics[J]. Insight-non-destructive testing and condition monitoring, 2014, 56(4): 189-194.
[26] 宁方立, 韩鹏程, 段爽, 等. 基于改进CNN的阀门泄漏超声信号识别方法[J]. 北京邮电大学学报, 2020, 43(3): 38-44
NING Fangli, HAN Pengcheng, DUAN Shuang, et al. Identification method of valve leakage ultrasonic signal based on improved CNN[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(3): 38-44
[27] ZHAO Minghang, ZHONG Shisheng, FU Xuyun, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE transactions on industrial informatics, 2020, 16(7): 4681-4690.
[28] 卢锦玲, 郭鲁豫. 基于改进深度残差收缩网络的电力系统暂态稳定评估[J]. 电工技术学报, 2021, 36(11): 2233-2244
LU Jinling, GUO Luyu. Power system transient stability assessment based on improved deep residual shrinkage network[J]. Transactions of China electrotechnical society, 2021, 36(11): 2233-2244
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems