[1]LIU Ke,HUANG Yuzhu,DENG Xin,et al.Electroencephalogram emotion recognition method using multitask feature integration[J].CAAI Transactions on Intelligent Systems,2024,19(3):610-618.[doi:10.11992/tis.202206023]
Copy

Electroencephalogram emotion recognition method using multitask feature integration

References:
[1] 吕宝粮, 张亚倩, 郑伟龙. 情感脑机接口研究综述[J]. 智能科学与技术学报, 2021, 3(1): 36–48
LYU Baoliang, ZHANG Yaqian, ZHENG Weilong. A survey of affective brain-computer interface[J]. Chinese journal of intelligent science and technology, 2021, 3(1): 36–48
[2] ALARC?O S M, FONSECA M J. Emotions recognition using EEG signals: a survey[J]. IEEE transactions on affective computing, 2019, 10(3): 374–393.
[3] 张冠华, 余旻婧, 陈果, 等. 面向情绪识别的脑电特征研究综述[J]. 中国科学: 信息科学, 2019, 49(9): 1097–1118
ZHANG Guanhua, YU Minjing, CHEN Guo, et al. A review of EEG features for emotion recognition[J]. Scientia sinica informationis, 2019, 49(9): 1097–1118
[4] PATEL P, R R, ANNAVARAPU R N. EEG-based human emotion recognition using entropy as a feature extraction measure[J]. Brain informatics, 2021, 8(1): 20.
[5] ZHENG Weilong, LIU Wei, LU Yifei, et al. EmotionMeter: a multimodal framework for recognizing human emotions[J]. IEEE transactions on cybernetics, 2019, 49(3): 1110–1122.
[6] SONG Tengfei, ZHENG Wenming, SONG Peng, et al. EEG emotion recognition using dynamical graph convolutional neural networks[J]. IEEE transactions on affective computing, 2020, 11(3): 532–541.
[7] 孙岩, 薄思雨, 吕娇娇. 认知重评和表达抑制情绪调节策略的脑网络分析: 来自 EEG 和 ERP 的证据[J]. 心理学报, 2020, 52(1): 12
SUN Yan, BO Siyu, LYU Jiaojiao. Brain network analysis of cognitive reappraisal and expressive suppression emotion regulation strategies: evidence from EEG and ERP[J]. Acta psychologica sinica, 2020, 52(1): 12
[8] ZHANG Shilin, HU Bin, BIAN Ji, et al. A novel emotion recognition method incorporating MST-based brain network and FVMD-GAMPE[C]//2021 IEEE International Conference on Bioinformatics and Biomedicine. Houston: IEEE, 2021: 1153–1158.
[9] KANG Qiaoju, GAO Qiang, SONG Yu, et al. Emotion recognition from EEG signals of hearing-impaired people using stacking ensemble learning framework based on a novel brain network[J]. IEEE sensors journal, 2021, 21(20): 23245–23255.
[10] XU Peng, XIONG Xiuchun, XUE Qing, et al. Differentiating between psychogenic nonepileptic seizures and epilepsy based on common spatial pattern of weighted EEG resting networks[J]. IEEE transactions on bio-medical engineering, 2014, 61(6): 1747–1755.
[11] ZHANG Junan, GU Liping, CHEN Yongqiang, et al. Multi-feature fusion emotion recognition based on resting eeg[J]. Journal of mechanics in medicine and biology, 2022, 22(3): 2240002.
[12] GAO Qiang, WANG Chuhan, WANG Zhe, et al. EEG based emotion recognition using fusion feature extraction method[J]. Multimedia tools and applications, 2020, 79(37): 27057–27074.
[13] GAO Zhongke, LI Rumei, MA Chao, et al. Core-brain-network-based multilayer convolutional neural network for emotion recognition[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 2510209.
[14] ZHENG Weilong, ZHU Jiayi, LU Baoliang. Identifying stable patterns over time for emotion recognition from EEG[J]. IEEE transactions on affective computing, 2019, 10(3): 417–429.
[15] WANG Zhongmin, HU Shuyuan, SONG Hui. Channel selection method for EEG emotion recognition using normalized mutual information[J]. IEEE access, 2019, 7: 143303–143311.
[16] ZHANG Yu, ZHOU Tao, WU Wei, et al. Improving EEG decoding via clustering-based multitask feature learning[J]. IEEE transactions on neural networks and learning systems, 2022, 33(8): 3587–3597.
[17] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972–976.
[18] LI Fali, WANG Jiuju, LIAO Yuanyuan, et al. Differentiation of schizophrenia by combining the spatial EEG brain network patterns of rest and task P300[J]. IEEE transactions on neural systems and rehabilitation engineering, 2019, 27(4): 594–602.
[19] RAMOSER H, MULLER-GERKING J, PFURTSCHELLER G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441–446.
[20] ZHENG Weilong, LYU Baoliang. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE transactions on autonomous mental development, 2015, 7(3): 162–175.
[21] LIU Jun, JI Shuiwang, YE Jieping. Multi-task feature learning via efficient l2, 1-norm minimization[EB/OL]. (2012–05–09)[2022–06–14]. http://arxiv.org/abs/1205.2631.
[22] LI Yazhou, DAI Wei, ZHANG Weifang. Bearing fault feature selection method based on weighted multidimensional feature fusion[J]. IEEE access, 2020, 8: 19008–19025.
[23] WU Xun, ZHENG Weilong, LI Ziyi, et al. Investigating EEG-based functional connectivity patterns for multimodal emotion recognition[J]. Journal of neural engineering, 2022, 19(1): 016012.
[24] LIU Wei, QIU Jielin, ZHENG Weilong, et al. Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition[J]. IEEE transactions on cognitive and developmental systems, 2022, 14(2): 715–729.
[25] KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis; using physiological signals[J]. IEEE transactions on affective computing, 2012, 3(1): 18–31.
[26] DING Yi, ROBINSON N, ZHANG Su, et al. TSception: capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition[EB/OL]. (2021–04–07) [2022–06–14]. http://arxiv.org/abs/2104.02935.
[27] NAWAZ R, CHEAH K H, NISAR H, et al. Comparison of different feature extraction methods for EEG-based emotion recognition[J]. Biocybernetics and biomedical engineering, 2020, 40(3): 910–926.
[28] LI Xiang, SONG Dawei, ZHANG Peng, et al. Exploring EEG features in cross-subject emotion recognition[J]. Frontiers in neuroscience, 2018, 12: 162.
[29] RAHMAN M A, KHANAM F, AHMAD M, et al. Multiclass EEG signal classification utilizing Rényi min-entropy-based feature selection from wavelet packet transformation[J]. Brain informatics, 2020, 7(1): 7.
[30] KHATUN S, MORSHED B I, BIDELMAN G M. A single-channel EEG-based approach to detect mild cognitive impairment via speech-evoked brain responses[J]. IEEE transactions on neural systems and rehabilitation engineering, 2019, 27(5): 1063–1070.
[31] YIN Zhong, ZHAO Mengyuan, WANG Yongxiong, et al. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model[J]. Computer methods and programs in biomedicine, 2017, 140: 93–110.
[32] LI Yang, ZHENG Wenming, ZONG Yuan, et al. A Bi-hemisphere domain adversarial neural network model for EEG emotion recognition[J]. IEEE transactions on affective computing, 2021, 12(2): 494–504.
[33] ZHOU Rushuang, ZHANG Zhiguo, FU Hong, et al. PR-PL: a novel transfer learning framework with prototypical representation based pairwise learning for EEG-based emotion recognition[EB/OL]. (2022–02–14) [2022–06–14]. http://arxiv.org/abs/2202.06509.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems