[1]CHEN Qiang,MA Jian,YANG Fan.Discrete brainstorm optimization algorithm for solving multi-target route planning problems[J].CAAI Transactions on Intelligent Systems,2023,18(1):96-103.[doi:10.11992/tis.202206018]
Copy

Discrete brainstorm optimization algorithm for solving multi-target route planning problems

References:
[1] LIN Wei, DELGADO-FRIAS J G, GAUSE D C, et al. Hybrid Newton-raphson genetic algorithm for the traveling salesman problem[J]. Cybernetics and systems, 1995, 26(4): 387–412.
[2] XIANG Xiaoshu, TIAN Ye, ZHANG Xingyi, et al. A pairwise proximity learning-based ant colony algorithm for dynamic vehicle routing problems[J]. IEEE transactions on intelligent transportation systems, 2022, 23(6): 5275–5286.
[3] XUE Yang, SUN Jianqiao. Solving the path planning problem in mobile robotics with the multi-objective evolutionary algorithm[J]. Applied sciences, 2018, 8(9): 1425.
[4] PARADISO R, ROBERTI R, LAGANá D, et al. An exact solution framework for multitrip vehicle-routing problems with time windows[J]. Operations research, 2020, 68(1): 180–198.
[5] CHEN Zhihuan, WU Huaiyu, CHEN Yang, et al. Patrol robot path planning in nuclear power plant using an interval multi-objective particle swarm optimization algorithm[J]. Applied soft computing, 2022, 116: 108192.
[6] 刘长石, 申立智, 盛虎宜, 等. 考虑交通拥堵规避的低碳时变车辆路径问题研究[J]. 控制与决策, 2020, 35(10): 2486–2496
LIU Changshi, SHEN Lizhi, SHENG Huyi, et al. Research on low-carbon time-dependent vehicle routing problem with traffic congestion avoidance approaches[J]. Control and decision, 2020, 35(10): 2486–2496
[7] 赵畅, 刘允刚, 陈琳, 等. 面向元启发式算法的多无人机路径规划现状与展望[J]. 控制与决策, 2022, 37(5): 1102–1115
ZHAO Chang, LIU Yungang, CHEN Lin, et al. Research and development trend of multi-UAV path planning based on metaheuristic algorithm[J]. Control and decision, 2022, 37(5): 1102–1115
[8] 胡立坤, 王帅军, 吕智林, 等. 移动机器人多目标搜寻的D*–蚁群融合算法[J]. 小型微型计算机系统, 2020, 41(3): 471–476
HU Likun, WANG Shuaijun, LYU Zhilin, et al. Multi-objective search based on d*-ant colony fusion algorithm[J]. Journal of Chinese computer systems, 2020, 41(3): 471–476
[9] 蒲兴成, 李俊杰, 吴慧超, 等. 基于改进粒子群算法的移动机器人多目标点路径规划[J]. 智能系统学报, 2017, 12(3): 301–309
PU Xingcheng, LI Junjie, WU Huichao, et al. Mobile robot multi-goal path planning using improved particle swarm optimization[J]. CAAI transactions on intelligent systems, 2017, 12(3): 301–309
[10] SHI Yuhui. Brain Storm Optimization Algorithm[C]//International Conference in Swarm Intelligence. Berlin: Springer, 2011: 303?309.
[11] 戚远航, 黄子峻, 曾楚祥, 等. 头脑风暴优化算法求解带转角能耗多无人机路径规划问题[J]. 计算机应用研究, 2022, 39(1): 177–182
QI Yuanhang, HUANG Zijun, ZENG Chuxiang, et al. Brain storm optimization algorithm for multi-UAV path planning with angular energy consumption[J]. Application research of computers, 2022, 39(1): 177–182
[12] 朱代先, 王明博, 刘树林, 等. 基于头脑风暴算法的FastSLAM2.0算法[J]. 计算机应用研究, 2021, 38(12): 3629–3633
ZHU Daixian, WANG Mingbo, LIU Shulin, et al. FastSLAM 2.0 algorithm based on brain storm optimization[J]. Application research of computers, 2021, 38(12): 3629–3633
[13] YANG Jian, ZHAO Donghui, XIANG Xinhao, et al. Robotic brain storm optimization: a multi-target collaborative searching paradigm for swarm robotics[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2021: 155?167.
[14] 狄卫民, 杜慧莉, 张鹏阁. 考虑动态拥堵的多车型绿色车辆路径问题优化[J]. 计算机工程与设计, 2021, 42(9): 2614–2620
DI Weimin, DU Huili, ZHANG Pengge. Optimization of multi-vehicle green vehicle routing problem considering dynamic congestion[J]. Computer engineering and design, 2021, 42(9): 2614–2620
[15] 刘伯运, 赵帅, 赵强强, 等. 水面垃圾清理机器人[J]. 兵工自动化, 2022, 41(2): 92–96
LIU Boyun, ZHAO Shuai, ZHAO Qiangqiang, et al. Water surface garbage cleaning robot[J]. Ordnance industry automation, 2022, 41(2): 92–96
[16] 周立辉, 张永生, 孙勇, 等. 智能变电站巡检机器人研制及应用[J]. 电力系统自动化, 2011, 35(19): 85–88,96
ZHOU Lihui, ZHANG Yongsheng, SUN Yong, et al. Development and application of equipment inspection robot for smart substations[J]. Automation of electric power systems, 2011, 35(19): 85–88,96
[17] CHENG Shi, SHI Yuhui, QIN Quande, et al. Maintaining population diversity in brain storm optimization algorithm[C]//2014 IEEE Congress on Evolutionary Computation. Beijing: IEEE, 2014: 3230-3237.
[18] 杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. 浙江大学学报(工学版), 2013, 47(10): 1705–1711,1746
YANG Yuting, SHI Yuhui, XIA Shunren. Discussion mechanism based brain storm optimization algorithm[J]. Journal of Zhejiang university (engineering science edition), 2013, 47(10): 1705–1711,1746
[19] NAZARAHARI M. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm[J]. Expert systems with applications, 2019, 115: 106–120.
[20] 吴晓涛, 孙增圻. 用遗传算法进行路径规划[J]. 清华大学学报(自然科学版), 1995, 35(5): 14–19
WU Xiaotao, SUN Zengqi. Using genetic algorithm for path planning[J]. Journal of Tsinghua University (science and technology edition), 1995, 35(5): 14–19
[21] CHICCO G. Overview and performance assessment of the clustering methods for electrical load pattern grouping[J]. Energy, 2012, 42(1): 68–80.
[22] PONNAMBALAM S G, JAGANNATHAN H, KATARIA M, et al. A TSP-GA multi-objective algorithm for flow-shop scheduling[J]. The international journal of advanced manufacturing technology, 2004, 23(11): 909–915.
[23] DEEP K. A new crossover operator for real coded genetic algorithms[J]. Applied mathematics and computation, 2007, 188(1): 895–911.
[24] DUCHO? F, BABINEC A, KAJAN M, et al. Path planning with modified a star algorithm for a mobile robot[J]. Procedia engineering, 2014, 96: 59–69.
[25] 刘晓莹, 蔡自兴, 余伶俐, 等. 一种正交混沌蚁群算法在群机器人任务规划中的应用研究[J]. 小型微型计算机系统, 2010, 31(1): 164–168
LIU Xiaoying, CAI Zixing, YU Lingli, et al. An orthogonal-cluster chaos ant colony algorithm based on swarm-robots system mission planning application research[J]. Journal of Chinese computer systems, 2010, 31(1): 164–168
[26] WU Changyou, FU Xisong. An agglomerative greedy brain storm optimization algorithm for solving the TSP[J]. IEEE access, 2016, 8: 201606–201621.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems