[1]CAI Jun,ZHONG Zhiyuan.Path planning of a meal delivery robot based on an improved ant colony algorithm[J].CAAI Transactions on Intelligent Systems,2024,19(2):370-380.[doi:10.11992/tis.202205056]
Copy

Path planning of a meal delivery robot based on an improved ant colony algorithm

References:
[1] 陶永, 王田苗, 刘辉, 等. 智能机器人研究现状及发展趋势的思考与建议[J]. 高技术通讯, 2019, 29(2): 149–163
TAO Yong, WANG Tianmiao, LIU Hui, et al. Insights and suggestions on the current situation and development trend of intelligent robots[J]. Chinese high technology letters, 2019, 29(2): 149–163
[2] KUANG Hua, XU Zhipeng, LI Xingli, et al. An extended car-following model accounting for the average headway effect in intelligent transportation system[J]. Physica A:statistical mechanics and its applications, 2017, 471: 778–787.
[3] POOLE A, KOTSIALOS A. Swarm intelligence algorithms for macroscopic traffic flow model validation with automatic assignment of fundamental diagrams[J]. Applied soft computing, 2016, 38: 134–150.
[4] CHMIEL W, DA?DA J, DZIECH A, et al. INSIGMA: an intelligent transportation system for urban mobility enhancement[J]. Multimedia tools and applications, 2016, 75(17): 10529–10560.
[5] 程志, 张志安, 李金芝, 等. 改进人工势场法的移动机器人路径规划[J]. 计算机工程与应用, 2019, 55(23): 29–34
CHENG Zhi, ZHANG Zhian, LI Jinzhi, et al. Mobile robots path planning based on improved artificial potential field[J]. Computer engineering and applications, 2019, 55(23): 29–34
[6] WANG Xiuhong, LIU Xuehao, WANG Yongcheng, et al. Research on path planning of mobile robot based on improved A* algorithm[C]//IE&EM 2019. Singapore: Springer, 2020: 153-161.
[7] WANG Huijuan, YU Yuan, YUAN Quanbo. Application of Dijkstra algorithm in robot path-planning[C]//2011 Second International Conference on Mechanic Automation and Control Engineering. Hohhot. IEEE, 2011: 1067-1069.
[8] ELHOSENY M, THARWAT A, HASSANIEN A E. Bezier curve based path planning in a dynamic field using modified genetic algorithm[J]. Journal of computational science, 2018, 25: 339–350.
[9] SONG Baoye, WANG Zidong, SHENG Ligang. A new genetic algorithm approach to smooth path planning for mobile robots[J]. Assembly automation, 2016, 36: 138–145.
[10] FERNANDES C M, MORA A M, MERELO J J, et al. KANTS: a stigmergic ant algorithm for cluster analysis and swarm art[J]. IEEE transactions on cybernetics, 2014, 44(6): 843–856.
[11] 陈嘉林, 魏国亮, 田昕. 改进粒子群算法的移动机器人平滑路径规划[J]. 小型微型计算机系统, 2019, 40(12): 2550–2555
CHEN Jialin, WEI Guoliang, TIAN Xin. Smooth path planning for mobile robots based on improved particle swarm optimization algorithm[J]. Journal of Chinese computer systems, 2019, 40(12): 2550–2555
[12] ALAM M S, RAFIQUE M U, KHAN M U. Mobile robot path planning in static environments using particle swarm optimization[EB/OL]. (2020-08-23)[2021-01-01].https://arxiv.org/abs/2008.10000.pdf.
[13] PATLE B K, PANDEY A, JAGADEESH A, et al. Path planning in uncertain environment by using firefly algorithm[J]. Defence technology, 2018, 14(6): 691–701.
[14] JIANG Tao, WANG Jianzhong. Study on path planning method for mobile robot based on fruit fly optimization algorithm[J]. Applied mechanics and materials, 2014, 536/537: 970–973.
[15] PANDA M, DAS B, PATI B B. Grey wolf optimization for global path planning of autonomous underwater vehicle[C]//Proceedings of the Third International Conference on Advanced Informatics for Computing Research. New York: ACM, 2019: 1-6.
[16] 楼传炜, 葛泉波, 刘华平, 等. 无人机群目标搜索的主动感知方法[J]. 智能系统学报, 2021, 16(3): 575–583
LOU Chuanwei, GE Quanbo, LIU Huaping, et al. Active perception method for UAV group target search[J]. CAAI transactions on intelligent systems, 2021, 16(3): 575–583
[17] 徐玉琼, 娄柯, 李志锟. 基于变步长蚁群算法的移动机器人路径规划[J]. 智能系统学报, 2021, 16(2): 330–337
XU Yuqiong, LOU Ke, LI Zhikun. Mobile robot path planning based on variable-step ant colony algorithm[J]. CAAI transactions on intelligent systems, 2021, 16(2): 330–337
[18] 夏小云, 周育人. 蚁群优化算法的理论研究进展[J]. 智能系统学报, 2016, 11(1): 27–36
XIA Xiaoyun, ZHOU Yuren. Advances in theoretical research of ant colony optimization[J]. CAAI transactions on intelligent systems, 2016, 11(1): 27–36
[19] CAO Jingang. Robot global path planning based on an improved ant colony algorithm[J]. Journal of computer and communications, 2016, 4(2): 11–19.
[20] TSAI P W, NGUYEN T T, DAO T K. Robot path planning optimization based on multiobjective grey wolf optimizer[C]// International Conference on Genetic and Evolutionary Computing. Cham: Springer, 2017: 166-173.
[21] 张毅, 杨光辉, 花远红. 基于改进人工鱼群算法的机器人路径规划[J]. 控制工程, 2020, 27(7): 1157–1163
ZHANG Yi, YANG Guanghui, HUA Yuanhong. Robot path planning based on improved artificial fish swarm algorithm[J]. Control engineering of China, 2020, 27(7): 1157–1163
[22] BRAND M, YU Xiaohua. Autonomous robot path optimization using firefly algorithm[C]//2013 International Conference on Machine Learning and Cybernetics. Tianjin: IEEE, 2014: 1028-1032.
[23] DORIGO M, MANIEZZO V, COLORNI A. The ant system: an autocatalytic optimizing process Technical Report91-O16[R]. Milan: Dipartimento di Elettronica, Politecnicl di Milano, 1991.
[24] DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents[C]//IEEE Transactions on Systems, Man, and Cybernetics, Part B. Cybernetics: IEEE, 2002: 29-41.
[25] 董炫良, 赵桂清. 人工势场引导蚁群算法的机器人导航路径规划[J]. 机械设计与制造, 2021(6): 169–173
DONG Xuanliang, ZHAO Guiqing. Robot navigation path planning based on ant colony algorithm guided by artificial potential field[J]. Machinery design & manufacture, 2021(6): 169–173
[26] 李琳, 刘士新, 唐加福. 改进的蚁群算法求解带时间窗的车辆路径问题[J]. 控制与决策, 2010, 25(9): 1379–1383
LI Lin, LIU Shixin, TANG Jiafu. Improved ant colony algorithm for solving vehicle routing problem with time windows[J]. Control and decision, 2010, 25(9): 1379–1383
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems