[1]CAI Hongshun,ZHANG Qiongmin,LONG Ying.Multiscale domain adaptation network for the auxiliary diagnosis of Alzheimer’s disease[J].CAAI Transactions on Intelligent Systems,2023,18(5):1090-1098.[doi:10.11992/tis.202205050]
Copy

Multiscale domain adaptation network for the auxiliary diagnosis of Alzheimer’s disease

References:
[1] 任汝静, 殷鹏, 王志会, 等. 中国阿尔茨海默病报告2021[J]. 诊断学理论与实践, 2021, 20(4): 317-337
REN Rujing, YIN Peng, WANG Zhihui, et al. China Alzheimer disease report 2021[J]. Journal of diagnostics concepts & practice, 2021, 20(4): 317-337
[2] KANG Li, JIANG Jingwan, HUANG Jianjun, et al. Identifying early mild cognitive impairment by multi-modality MRI-based deep learning[J]. Frontiers in aging neuroscience, 2020, 12: 206.
[3] 徐晨靖, 司亚妮, 史春宇, 等. 多模态MRI在阿尔茨海默病早期诊断中的应用研究进展[J]. 甘肃医药, 2021, 40(8): 682-683,692
XU Chenjing, SI Yani, SHI Chunyu, et al. Advances in the application of mutimodal MRI in the early diagnosis of Alzheimer’s disease[J]. Gansu medical journal, 2021, 40(8): 682-683,692
[4] FERNANDO T, GAMMULLE H, DENMAN S, et al. Deep learning for medical anomaly detection-A survey[J]. ACM computing surveys, 2022, 54(7): 1-37.
[5] ZHU Wenyong, SUN Liang, HUANG Jiashuang, et al. Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI[J]. IEEE transactions on medical imaging, 2021, 40(9): 2354-2366.
[6] 孔伶旭, 吴海锋, 曾玉, 等. 迁移学习特征提取的rs-fMRI早期轻度认知障碍分类[J]. 智能系统学报, 2021, 16(4): 662-672
KONG Lingxu, WU Haifeng, ZENG Yu, et al. Transfer learning-based feature extraction method for the classification of rs-fMRI early mild cognitive impairment[J]. CAAI transactions on intelligent systems, 2021, 16(4): 662-672
[7] FINLAYSON S G, SUBBASWAMY A, SINGH K, et al. The clinician and dataset shift in artificial intelligence[J]. The New England journal of medicine, 2021, 385(3): 283-286.
[8] KONDRATEVA E, POMINOVA M, POPOVA E, et al. Domain shift in computer vision models for MRI data analysis: an overview[C]//Thirteenth International Conference on Machine Vision. Rome: SPIE, 2020: 11605
[9] FARAHANI A, VOGHOEI S, RASHEED K, et al. A brief review of domain adaptation[C]//Advances in Data Science and Information Engineering. Cham: Springer, 2021: 877?894.
[10] GUAN Hao, LIU Mingxia. Domain adaptation for medical image analysis: a survey[J]. IEEE transactions on biomedical engineering, 2022, 69(3): 1173-1185.
[11] JAVANMARDI M, TASDIZEN T. Domain adaptation for biomedical image segmentation using adversarial training[C]//2018 IEEE 15th International Symposium on Biomedical Imaging. Washington, DC: IEEE, 2018: 554?558.
[12] YANG Jie, VETTERLI T, BALTE P P, et al. Unsupervised domain adaption with adversarial learning for emphysema subtyping on cardiac CT scans: the mesa study[C]//2019 IEEE 16th International Symposium on Biomedical Imaging. Venice: IEEE, 2019: 289?293.
[13] PANFILOV E, TIULPIN A, KLEIN S, et al. Improving robustness of deep learning based knee MRI segmentation: mixup and adversarial domain adaptation[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2020: 450?459.
[14] YANG Suhui, ZHOU Xia, WANG Jun, et al. Unsupervised domain adaptation for cross-device OCT lesion detection via learning adaptive features[C]//2020 IEEE 17th International Symposium on Biomedical Imaging. Iowa City: IEEE, 2020: 1570?1573.
[15] GAO Yufei, ZHANG Yameng, CAO Zhiyuan, et al. Decoding brain states from fMRI signals by using unsupervised domain adaptation[J]. IEEE journal of biomedical and health informatics, 2020, 24(6): 1677-1685.
[16] WU Fuping, ZHUANG Xiahai. CF distance: a new domain discrepancy metric and application to explicit domain adaptation for cross-modality cardiac image segmentation[J]. IEEE transactions on medical imaging, 2020, 39(12): 4274-4285.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3?19.
[18] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//4th International Conference on Learning Representations. Puerto Rico: OpenReview. net, 2016: 1?13
[19] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014: 2672?2680.
[20] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The journal of machine learning research, 2016, 17(1): 2096-2030.
[21] SHU Rui, BUI H H, NARUI H, et al. A dirt-t approach to unsupervised domain adaptation[EB/OL]. (2018?02?23) [2022?05?25]. https://arxiv.org/abs/1802.08735.
[22] LI Jingjing, CHEN Erpeng, DING Zhengming, et al. Maximum density divergence for domain adaptation[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(11): 3918-3930.
[23] KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//3rd International Conference on Learning Representations. San Diego: OpenReview, 2015: 1?11.
[24] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[25] YU Chaohui, WANG Jindong, CHEN Yiqiang, et al. Transfer learning with dynamic adversarial adaptation network[C]//2019 IEEE International Conference on Data Mining. Beijing: IEEE, 2020: 778?786.
[26] LONG Mingsheng, CAO Zhangjie, WANG Jianmin, et al. Conditional adversarial domain adaptation[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018: 1647?1657.
[27] GUAN Hao, LIU Yunbi, YANG Erkun, et al. Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification[J]. Medical image analysis, 2021, 71: 102076.
[28] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9: 2579-2605.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems