[1]SONG Meijia,JIA Heming,LIN Zhixing,et al.Harris Hawks optimization algorithm based on nonlinear convergence factor and mutation quasi-reflected-based learning[J].CAAI Transactions on Intelligent Systems,2024,19(3):738-748.[doi:10.11992/tis.202205008]
Copy

Harris Hawks optimization algorithm based on nonlinear convergence factor and mutation quasi-reflected-based learning

References:
[1] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95 - International Conference on Neural Networks. Perth: IEEE, 2002: 1942–1948.
[2] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46–61.
[3] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in engineering software, 2016, 95(C): 51–67.
[4] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm[J]. Advances in engineering software, 2017, 114(C): 163–191.
[5] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge based systems, 2016, 96: 120–133.
[6] LI Shimin, CHEN Huiling, WANG Mingjing, et al. Slime mould algorithm: a new method for stochastic optimization[J]. Future generation computer systems, 2020, 111: 300–323.
[7] 贾鹤鸣, 李瑶, 孙康健. 基于遗传乌燕鸥算法的同步优化特征选择[J]. 自动化学报, 2022, 48(6): 1601–1615
JIA Heming, LI Yao, SUN Kangjian. Simultaneous feature selection optimization based on hybrid sooty tern optimization algorithm and genetic algorithm[J]. Acta automatica sinica, 2022, 48(6): 1601–1615
[8] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris Hawks optimization: algorithm and applications[J]. Future generation computer systems, 2019, 97: 849–872.
[9] JIA Heming, PENG Xiaoxu, KANG Lifei, et al. Pulse coupled neural network based on Harris Hawks optimization algorithm for image segmentation[J]. Multimedia tools and applications, 2020, 79(37): 28369–28392.
[10] FAN Chencheng, ZHOU Yongquan, TANG Zhonghua. Neighborhood centroid opposite-based learning Harris Hawks optimization for training neural networks[J]. Evolutionary intelligence, 2021, 14(4): 1847–1867.
[11] SARAVANAN G, IBRAHIM A, KUMAR D et al. Iot based speed control of BLDC motor with Harris hawks optimization controller[J]. International journal of grid and distributed computing, 2020, 13: 1902–1915.
[12] 马一鸣, 石志东, 赵康, 等. 基于改进哈里斯鹰优化算法的TDOA定位[J]. 计算机工程, 2020, 46(12): 179–184
MA Yiming, SHI Zhidong, ZHAO Kang, et al. TDOA localization based on improved Harris hawk optimization algorithm[J]. Computer engineering, 2020, 46(12): 179–184
[13] HOUSSEIN E H, NEGGAZ N, HOSNEY M E, et al. Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities[J]. Neural computing and applications, 2021, 33(20): 13601–13618.
[14] 汤安迪, 韩统, 徐登武, 等. 混沌精英哈里斯鹰优化算法[J]. 计算机应用, 2021, 41(8): 2265–2272
TANG Andi, HAN Tong, XU Dengwu, et al. Chaotic elite Harris Hawks optimization algorithm[J]. Journal of computer applications, 2021, 41(8): 2265–2272
[15] JIA Heming, LANG Chunbo, OLIVA D, et al. Dynamic Harris Hawks optimization with mutation mechanism for satellite image segmentation[J]. Remote sensing, 2019, 11(12): 1421.
[16] MIRJALILI S, GANDOMI A H. Chaotic gravitational constants for the gravitational search algorithm[J]. Applied soft computing, 2017, 53(C): 407–419.
[17] 王宁, 何庆. 融合黄金正弦与sigmoid连续化的海鸥优化算法[J]. 计算机应用研究, 2022, 39(1): 157–162,169
WANG Ning, HE Qing. Seagull optimization algorithm combining golden sine and sigmoid continuity[J]. Application research of computers, 2022, 39(1): 157–162,169
[18] WANG Shuang, LIU Qingxin, LIU Yuxiang, et al. A hybrid SSA and SMA with mutation opposition-based learning for constrained engineering problems[J]. Computational intelligence and neuroscience, 2021, 2021: 6379469.
[19] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Vienna: IEEE, 2006: 695–701.
[20] RAHNAMAYAN S, TIZHOOSH H R, SALAMA M M A. Quasi-oppositional differential evolution[C]//2007 IEEE Congress on Evolutionary Computation. Singapore: IEEE, 2007: 2229–2236.
[21] EWEES A A, ABD ELAZIZ M, HOUSSEIN E H. Improved grasshopper optimization algorithm using opposition-based learning[J]. Expert systems with applications, 2018, 112: 156–172.
[22] FAN Qian, CHEN Zhenjian, XIA Zhanghua. A novel quasi-reflected Harris Hawks optimization algorithm for global optimization problems[J]. Soft computing, 2020, 24(19): 14825–14843.
[23] 李守玉, 何庆, 杜逆索. 分段权重和变异反向学习的蝴蝶优化算法[J]. 计算机工程与应用, 2021, 57(22): 92–101
LI Shouyu, HE Qing, DU Nisuo. Piecewise weight and mutation opposition-based learning butterfly optimization algorithm[J]. Computer engineering and applications, 2021, 57(22): 92–101
[24] 贾鹤鸣, 姜子超, 李瑶. 基于改进秃鹰搜索算法的同步优化特征选择[J]. 控制与决策, 2022, 37(2): 445–454
JIA Heming, JIANG Zichao, LI Yao. Simultaneous feature selection optimization based on improved bald eagle search algorithm[J]. Control and decision, 2022, 37(2): 445–454
[25] SONG Meijia, JIA Heming, ABUALIGAH L, et al. Modified Harris Hawks optimization algorithm with exploration factor and random walk strategy[J]. Computational intelligence and neuroscience, 2022, 2022: 4673665.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems