[1]GU Qinghua,TANG Hui,LI Xuexian,et al.A multimodal multi-objective optimization algorithm with clustering and niching searching[J].CAAI Transactions on Intelligent Systems,2023,18(5):1127-1141.[doi:10.11992/tis.202204040]
Copy

A multimodal multi-objective optimization algorithm with clustering and niching searching

References:
[1] QU B, SUGANTHAN P N. Novel multimodal problems and differential evolution with ensemble of restricted tournament selection[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Barcelona: IEEE, 2010: 1?7.
[2] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.
[3] LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE transactions on evolutionary computation, 2006, 10(3): 281-295.
[4] ZHANG Xuwei, LIU Hao, TU Liangping. A modified particle swarm optimization for multimodal multi-objective optimization[J]. Engineering applications of artificial intelligence, 2020, 95: 103905.
[5] 高海军, 潘大志. 星型结构的多目标粒子群算法求解多模态多目标问题[J]. 计算机工程与科学, 2020, 42(8): 1472-1481
GAO Haijun, PAN Dazhi. A multi-objective particle swarm optimization algorithm with star structure to solve the multi-modal multi-objective problem[J]. Computer engineering and science, 2020, 42(8): 1472-1481
[6] QU B Y, SUGANTHAN P N, DAS S. A distance-based locally informed particle swarm model for multimodal optimization[J]. IEEE transactions on evolutionary computation, 2013, 17(3): 387-402.
[7] QU Boyang, LI Chao, LIANG Jing, et al. A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems[J]. Applied soft computing, 2020, 86: 105886.
[8] LIANG Jing, YUE Caitong, QU Boyang. Multimodal multi-objective optimization: a preliminary study[C]//2016 IEEE Congress on Evolutionary Computation. Vancouver: IEEE, 2016: 2454?2461.
[9] ZHANG Kai, SHEN Chaonan, YEN G G, et al. Two-stage double niched evolution strategy for multimodal multiobjective optimization[J]. IEEE transactions on evolutionary computation, 2021, 25(4): 754-768.
[10] YUE Caitong, QU Boyang, LIANG Jing. A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems[J]. IEEE transactions on evolutionary computation, 2018, 22(5): 805-817.
[11] WANG Ying, YANG Zhile, GUO Yuanjun, et al. A novel multi-objective competitive swarm optimization algorithm for multi-modal multi objective problems[C]//2019 IEEE Congress on Evolutionary Computation. Wellington: IEEE, 2019: 271?278.
[12] LIANG Jing, GUO Qianqian, YUE Caitong, et al. A self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems[C]//International Conference on Swarm Intelligence. Cham: Springer, 2018: 550?560.
[13] HU Yi, WANG Jie, LIANG Jing, et al. A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm[J]. Science China information sciences, 2019, 62(7): 70206.
[14] WANG Yong, LI Hanxiong, YEN G G, et al. MOMMOP: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems[J]. IEEE transactions on cybernetics, 2015, 45(4): 830-843.
[15] LUO Naili, LIN Wu, HUANG Peizhi, et al. An evolutionary algorithm with clustering-based assisted selection strategy for multimodal multiobjective optimization[J]. Complexity, 2021, 2021: 1-13.
[16] LUO Naili, YE Yulong, LIN Wu, et al. A novel multimodal multiobjective memetic algorithm with a local detection mechanism and a clustering-based selection strategy[J]. Memetic computing, 2023, 15(1): 31-43.
[17] HU Yi, WANG Jie, LIANG Jing, et al. A two-archive model based evolutionary algorithm for multimodal multi-objective optimization problems[J]. Applied soft computing, 2022, 119: 108606.
[18] LIU Yiping, YEN G G, GONG Dunwei. A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies[J]. IEEE transactions on evolutionary computation, 2019, 23(4): 660-674.
[19] YANG Qite, WANG Zhenkun, LUO Jianping, et al. Balancing performance between the decision space and the objective space in multimodal multiobjective optimization[J]. Memetic computing, 2021, 13(1): 31-47.
[20] 胡洁, 范勤勤, 王直欢. 融合分区和局部搜索的多模态多目标优化[J]. 智能系统学报, 2021, 16(4): 774-784
HU Jie, FAN Qinqin, WANG Zhihuan. Multimodal multi-objective optimization combining zoning and local search[J]. CAAI transactions on intelligent systems, 2021, 16(4): 774-784
[21] LIANG Jing, XU Weiwei, YUE Caitong, et al. Multimodal multiobjective optimization with differential evolution[J]. Swarm and evolutionary computation, 2019, 44: 1028-1059.
[22] ZHANG Weizheng, LI Guoqing, ZHANG Weiwei, et al. A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization[J]. Swarm and evolutionary computation, 2019, 50: 100569.
[23] LIN Qiuzhen, LIN Wu, ZHU Zexuan, et al. Multimodal multiobjective evolutionary optimization with dual clustering in decision and objective spaces[J]. IEEE transactions on evolutionary computation, 2021, 25(1): 130-144.
[24] LIANG Jing, QIAO Kangjia, YUE Caitong, et al. A clustering-based differential evolution algorithm for solving multimodal multi-objective optimization problems[J]. Swarm and evolutionary computation, 2021, 60: 100788.
[25] SHI Ruizhi, LIN Wu, LIN Qiuzhen, et al. Multimodal multi-objective optimization using A density-based one-by-one update strategy[C]//2019 IEEE Congress on Evolutionary Computation. Wellington: IEEE, 2019: 295?301.
[26] DUAN Haibin, QIAO Peixin. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning[J]. International journal of intelligent computing and cybernetics, 2014, 7(1): 24-37.
[27] 陶国娇, 李智. 带认知因子的交叉鸽群算法[J]. 四川大学学报(自然科学版), 2018, 55(2): 295-300
TAO Guojiao, LI Zhi. A crossed pigeon-inspired optimization algorithm with congnitive factor[J]. Journal of Sichuan university (natural science edition), 2018, 55(2): 295-300
[28] 尹德鑫, 张达敏, 蔡朋宸, 等. 基于鸽群算法的Fuch混沌蝗虫算法[J]. 计算机应用研究, 2021, 38(7): 2013-2017
YIN Dexin, ZHANG Damin, CAI Pengchen, et al. Fuch chaotic grasshopper algorithm based on pigeon swarm algorithm[J]. Application research of computers, 2021, 38(7): 2013-2017
[29] LIU Hanmin, YAN Xuesong, WU Qinghua. An improved pigeon-inspired optimisation algorithm and its application in parameter inversion[J]. Symmetry, 2019, 11(10): 1291.
[30] 马龙, 卢才武, 顾清华, 等. 引入改进鸽群搜索算子的粒子群优化算法[J]. 模式识别与人工智能, 2018, 31(10): 909-920
MA Long, LU Caiwu, GU Qinghua, et al. Particle swarm optimization with search operator of improved pigeon-inspired algorithm[J]. Pattern recognition and artificial intelligence, 2018, 31(10): 909-920
[31] 岳彩通, 梁静, 瞿博阳, 等. 多模态多目标优化综述[J]. 控制与决策, 2021, 36(11): 2577-2588
YUE Caitong, LIANG Jing, QU Boyang, et al. A survey on multimodal multiobjective optimization[J]. Control and decision, 2021, 36(11): 2577-2588
[32] QIU Huaxin, DUAN Haibin. Multi-objective pigeon-inspired optimization for brushless direct current motor parameter design[J]. Science China technological sciences, 2015, 58(11): 1915-1923.
[33] ZHANG Qingfu, LI Hui. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE transactions on evolutionary computation, 2007, 11(6): 712-731.
[34] RUDOLPH G, NAUJOKS B, PREUSS M. Capabilities of EMOA to detect and preserve equivalent Pareto subsets[C]//Proceedings of the 4th international conference on Evolutionary multi-criterion optimization. New York: ACM, 2007: 36-50.
[35] DEB K, TIWARI S. Omni-optimizer: a procedure for single and multi-objective optimization[C]//Proceedings of the Third international conference on Evolutionary Multi-Criterion Optimization. New York: ACM, 2005: 47-61.
[36] DERRAC J, GARCíA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and evolutionary computation, 2011, 1(1): 3-18.
[37] ISHIBUCHI H, AKEDO N, NOJIMA Y. A many-objective test problem for visually examining diversity maintenance behavior in a decision space[C]//Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2011: 649-656.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems