[1]ZHANG Xinyu,YANG Zhongliang,ZHOU Zhehua,et al.Design of an intelligent identification and sorting system used for classification of multiobjective medical waste[J].CAAI Transactions on Intelligent Systems,2024,19(3):584-597.[doi:10.11992/tis.202204039]
Copy

Design of an intelligent identification and sorting system used for classification of multiobjective medical waste

References:
[1] WEI Yujun, CUI Meng, YE Zhonghua, et al. Environmental challenges from the increasing medical waste since SARS outbreak[J]. Journal of cleaner production, 2021, 291: 125246.
[2] FABIANO B, HAILWOOD M, THOMAS P. Safety, environmental and risk management related to Covid-19[J]. Process safety and environmental protection:transactions of the institution of chemical engineers, Part B, 2022, 160: 397–399.
[3] XU Linping, KONG Yan, WEI Mingxue, et al. Combatting medical plastic waste through visual elicitation: insights from healthcare professionals[J]. Journal of cleaner production, 2021, 329: 129650.
[4] EREN E, TUZKAYA U R. Safe distance-based vehicle routing problem: medical waste collection case study in COVID-19 pandemic[J]. Computers & industrial engineering, 2021, 157: 107328.
[5] DHARMARAJ S, ASHOKKUMAR V, PANDIYAN R, et al. Pyrolysis: an effective technique for degradation of COVID-19 medical wastes[J]. Chemosphere, 2021, 275: 130092.
[6] PURNOMO C W, KURNIAWAN W, AZIZ M. Technological review on thermochemical conversion of COVID-19-related medical wastes[J]. Resources, conservation, and recycling, 2021, 167: 105429.
[7] NEMA S K, GANESHPRASAD K S. Plasma pyrolysis of medical waste[J]. Current science, 2002, 83(3): 271–278.
[8] KUMAR N M, ABED MOHAMMED M, ABDULKAREEM K H, et al. Artificial intelligence-based solution for sorting COVID related medical waste streams and supporting data-driven decisions for smart circular economy practice[J]. Process safety and environmental protection, 2021, 152: 482–494.
[9] AWAWDEH M, BASHIR A, FAISAL T, et al. IoT-based intelligent waste bin[C]//2019 Advances in Science and Engineering Technology International Conferences. Dubai: IEEE, 2019: 1–6.
[10] MEGHNA A, IMMANUEL M, SUBHAGAN P, et al. Trash bot[J]. International journal of research in engineering, science and management, 2019, 2(7): 301–304.
[11] 张凇. 智能垃圾分类产品的模块化设计与开发[D]. 上海: 东华大学, 2020.
ZHANG Song. Modular design and development of intelligent waste sorting products[D]. Shanghai: Donghua University, 2020.
[12] ZHANG Song, CHEN Yumiao, YANG Zhongliang, et al. Computer vision based two-stage waste recognition-retrieval algorithm for waste classification[J]. Resources conservation and recycling, 2021, 169: 105543.
[13] 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2022, 17(1): 16–31
SU Li, SUN Yuxin, YUAN Shouzheng. A survey of instance segmentation research based on deep learning[J]. CAAI transactions on intelligent systems, 2022, 17(1): 16–31
[14] 莫卓亚, 彭创权. 基于深度学习的垃圾分类识别技术[J]. 现代工业经济和信息化, 2020, 10(10): 60–61
MO Zhuoya, PENG Chuangquan. Garbage classification and recognition technology based on deep learning[J]. Modern industrial economy and informationization, 2020, 10(10): 60–61
[15] 马雯, 于炯, 王潇, 等. 基于改进Faster R-CNN的垃圾检测与分类方法[J]. 计算机工程, 2021, 47(8): 294–300
MA Wen, YU Jiong, WANG Xiao, et al. Garbage detection and classification method based on improved faster R-CNN[J]. Computer engineering, 2021, 47(8): 294–300
[16] 王文胜, 年诚旭, 张超, 等. 基于YOLO v5模型的非住宅区自动垃圾分类箱设计[J]. 环境工程, 2022, 40(3): 159–165
WANG Wensheng, NIAN Chengxu, ZHANG Chao, et al. Design of automatic garbage sorting bin for non-residential area based on yolo v5[J]. Environmental engineering, 2022, 40(3): 159–165
[17] 何锐波, 狄岚, 梁久祯. 一种改进的深度学习的道路交通标识识别算法[J]. 智能系统学报, 2020, 15(6): 1121–1130
HE Ruibo, DI Lan, LIANG Jiuzhen. An improved deep learning algorithm for road traffic identification[J]. CAAI transactions on intelligent systems, 2020, 15(6): 1121–1130
[18] 周哲画. 医疗废弃物识别与分拣垃圾箱设计[D]. 上海: 东华大学, 2021.
ZHOU Zhehua. Design of medical waste identification and Sorting bin[D]. Shanghai: Donghua University, 2021.
[19] STOCK M, MILLER K. Optimal kinematic design of spatial parallel manipulators: application to linear delta robot[J]. Journal of mechanical design, 2003, 125(2): 292–301.
[20] MATS I, CLéMENT G, KRISTAN M. An introduction to utilising the redundancy of a kinematically redundant parallel manipulator to operate a gripper[J]. Mechanism and machine theory, 2016, 101: 50–59.
[21] YU Zhenwei, SHEN Yonggang, SHEN Chenkai. A real-time detection approach for bridge cracks based on YOLOv4-FPM[J]. Automation in construction, 2021, 122: 103514.
[22] ZHONG Zhun, ZHENG Liang, KANG Guoliang, et al. Random erasing data augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washington: AAAI, 2020, 34(7): 13001–13008.
[23] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020–04–23)[2022–04–23]. https://api.semanticscholar.org/CorpusID:216080778.
[24] NIE Yixin, WANG Songhe, BANSAL M. Revealing the importance of semantic retrieval for machine reading at scale[EB/OL]. (2019–09–01)[2022–04–23]. https://api.semanticscholar.org/CorpusID:202660724.
[25] ZENG Guangmiao, YU Wanneng, WANG Rongjie, et al. Research on mosaic image data enhancement for overlapping ship targets[EB/OL]. (2021–05–11)[2022–04–23]. http://arxiv.org/abs/2105.05090.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems