[1]XU Mengxi,SHI Jianqiang,ZHENG Shengnan,et al.Detection model of target motion direction simulating the optic lobe neural network of compound eyes[J].CAAI Transactions on Intelligent Systems,2024,19(3):546-555.[doi:10.11992/tis.202203044]
Copy

Detection model of target motion direction simulating the optic lobe neural network of compound eyes

References:
[1] 郭爱克. 探索自然智慧本质, 照亮类脑智能之路: 果蝇学习记忆与抉择的神经环路机制研究[J]. 中国科学:生命科学, 2019, 49(10): 1354–1374
GUO Aike. A cross-species review of cognitive neural circuits to illuminate the way to brain-inspired intelligence[J]. Scientia sinica (vitae), 2019, 49(10): 1354–1374
[2] PAULK A, MILLARD S S, VAN SWINDEREN B. Vision in Drosophila: seeing the world through a model’s eyes[J]. Annual review of entomology, 2013, 58: 313–332.
[3] WINDING M, PEDIGO B D, BARNES C L, et al. The connectome of an insect brain[J]. Science, 2023, 379(6636): eadd9330.
[4] BORST A, HAAG J, MAUSS A S. How fly neurons compute the direction of visual motion[J]. Journal of comparative physiology A, neuroethology, sensory, neural, and behavioral physiology, 2020, 206(2): 109–124.
[5] 章盛, 沈洁, 郑胜男, 等. 类果蝇复眼视觉神经计算建模及仿生应用研究综述[J]. 红外技术, 2023, 45(3): 229–240
ZHANG Sheng, SHEN Jie, ZHENG Shengnan, et al. Research review of drosophila-like compound eye visual neural computational modeling and bionic applications[J]. Infrared technology, 2023, 45(3): 229–240
[6] 徐梦溪, 施建强. 仿生复眼型多源监测数据融合与专题信息提取[J]. 水利信息化, 2021(1): 71–75
XU Mengxi, SHI Jianqiang. Bionic compound eye based multi-source monitoring data fusion and thematic information extraction[J]. Water resources informatization, 2021(1): 71–75
[7] 胡雪蕾, 高明, 陈阳. 大视场曲面仿生复眼光学系统设计[J]. 红外与激光工程, 2020, 49(1): 0114002
HU Xuelei, GAO Ming, CHEN Yang. Design of curved bionic compound eye optical system with large field of view[J]. Infrared and laser engineering, 2020, 49(1): 0114002
[8] 王申奥, 王汉熙. “人造复眼” 英文学术文献展现的学术研究整体态势[J]. 武汉理工大学学报, 2020, 42(2): 90–102
WANG Shen’ao, WANG Hanxi. Academic research situation and development direction of the “artificial compound eyes” in English academic literature[J]. Journal of Wuhan University of Technology, 2020, 42(2): 90–102
[9] FU Qinbing, WANG Hongxin, HU Cheng, et al. Towards computational models and applications of insect visual systems for motion perception: a review[J]. Artificial life, 2019, 25(3): 263–311.
[10] 黄凤辰, 李敏, 石爱业, 等. 受昆虫视觉启发的多光谱遥感影像小目标检测[J]. 通信学报, 2011, 32(9): 88–95
HUANG Fengchen, LI Min, SHI Aiye, et al. Insect visual system inspired small target detection for multi-spectral remotely sensed images[J]. Journal on communications, 2011, 32(9): 88–95
[11] JOESCH M, SCHNELL B, RAGHU S V, et al. ON and OFF pathways in Drosophila motion vision[J]. Nature, 2010, 468(7321): 300–304.
[12] KELE? M F, FRYE M A. Object-detecting neurons in drosophila[J]. Current biology:CB, 2017, 27(5): 680–687.
[13] HAAG J, ARENZ A, SERBE E, et al. Complementary mechanisms create direction selectivity in the fly[J]. eLife, 2016, 5: e17421.
[14] STROTHER J A, WU S T, WONG A M, et al. The emergence of directional selectivity in the visual motion pathway of drosophila[J]. Neuron, 2017, 94(1): 168–182.
[15] FISHER Y E, LEONG J C S, SPORAR K, et al. A class of visual neurons with wide-field properties is required for local motion detection[J]. Current biology: CB, 2015, 25(24): 3178–3189.
[16] EICHNER H, JOESCH M, SCHNELL B, et al. Internal structure of the fly elementary motion detector[J]. Neuron, 2011, 70(6): 1155–1164.
[17] HENNIG P, EGELHAAF M. Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing[J]. Frontiers in neural circuits, 2012, 6: 14.
[18] WIEDERMAN S D, O’CARROLL D C. Biologically inspired feature detection using cascaded correlations of off and on channels[J]. Journal of artificial intelligence and soft computing research, 2013, 3(1): 5–14.
[19] YUE Shigang, FU Qinbing. Modeling direction selective visual neural network with ON and OFF pathways for extracting motion cues from cluttered background[C]//2017 International Joint Conference on Neural Networks. Anchorage: IEEE, 2017: 831-838.
[20] FU Qinbing, YUE Shigang. Modelling Drosophila motion vision pathways for decoding the direction of translating objects against cluttered moving backgrounds[J]. Biological cybernetics, 2020, 114(4/5): 443–460.
[21] 李柯, 沈克永, 刘宝, 等. 模拟飞虫复眼视觉的小目标运动检测与跟踪系统研究[J]. 图像与信号处理, 2022, 11(3): 92–100
LI Ke, SHEN Keyong, LIU Bao, et al. Research on moving small target detection and tracking system of simulated flying insect compound eye vision[J]. Journal of image and signal processing, 2022, 11(3): 92–100
[22] 施建强, 徐扬, 徐梦溪, 等. 一种用于感知目标运动方向的人工苍蝇视觉神经网络模型[C]// 2021年中国仪器仪表学会学术年会. 上海: 中国仪器仪表学会, 2021: 1-4.
SHI Jianqiang, XU Yang, XU Mmengxi, et al. An artificial neural network model simulating fly vision for sensing target motion direction[C]//2021 Annual Conference of China Instrument and Control Society. Shanghai: China Instrument and Control Society, 2021: 1-4.
[23] SHEN Keyong, YANG Yang, LIANG Yuying, et al. Modeling Drosophila vision neural pathways to detect weak moving targets from cluttered backgrounds[J]. Computers and electrical engineering, 2022, 99: 107678.
[24] BORST A, EGELHAAF M. Principles of visual motion detection[J]. Trends in neurosciences, 1989, 12(8): 297–306.
[25] FRANCESCHINI N, RIEHLE A, LE NESTOUR A. Directionally selective motion detection by insect neurons[C]//Facets of Vision. Heidelberg: Springer, 1989: 360-390.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems