[1]BAI Tao,DONG Qinhao,FENG Zikun,et al.Longitudinal motion control of underwater high-speed vehicles based on reinforcement learning[J].CAAI Transactions on Intelligent Systems,2023,18(5):902-916.[doi:10.11992/tis.202203024]
Copy

Longitudinal motion control of underwater high-speed vehicles based on reinforcement learning

References:
[1] MAO Xiaofeng, WANG Qian. Adaptive control design for a supercavitating vehicle model based on fin force parameter estimation[J]. Journal of vibration and control, 2015, 21(6): 1220-1233.
[2] 赵新华, 孙尧, 安伟光, 等. 超空泡航行体控制问题研究进展[J]. 力学进展, 2009, 39(5): 537-545
ZHAO Xinhua, SUN Yao, AN Weiguang, et al. Advances in supercavitating vehicle control technology[J]. Advances in mechanics, 2009, 39(5): 537-545
[3] DZIELSKI J, KURDILA A. A benchmark control problem for supercavitating vehicles and an initial investigation of solutions[J]. Journal of vibration and control, 2003, 9(7): 791-804.
[4] 陈超倩, 曹伟, 王聪, 等. 超空泡航行体最优控制建模与仿真[J]. 北京理工大学学报, 2016, 36(10): 1031-1036
CHEN Chaoqian, CAO Wei, WANG Cong, et al. Modeling and simulating of supercavitating vehicles based on optimal control[J]. Transactions of Beijing Institute of Technology, 2016, 36(10): 1031-1036
[5] 庞爱平, 何朕, 王京华, 等. 超空泡航行体H∞状态反馈设计[J]. 控制理论与应用, 2018, 35(2): 146-152
PANG Aiping, HE Zhen, WANG Jinghua, et al. H-infinity state feedback design for supercavitating vehicles[J]. Control theory & applications, 2018, 35(2): 146-152
[6] 韩云涛, 强宝琛, 孙尧, 等. 基于LPV的超空泡航行体H∞抗饱和控制[J]. 系统工程与电子技术, 2016, 38(2): 357-361
HAN Yuntao, QIANG Baochen, SUN Yao, et al. H∞ anti-windup control for a supercavitating vehicle based on LPV[J]. Systems engineering and electronics, 2016, 38(2): 357-361
[7] 李洋, 刘明雍, 张小件. 基于自适应RBF神经网络的超空泡航行体反演控制[J]. 自动化学报, 2020, 46(4): 734-743
LI Yang, LIU Mingyong, ZHANG Xiaojian. Adaptive RBF neural network based backsteppting control for supercavitating vehicles[J]. Acta automatica sinica, 2020, 46(4): 734-743
[8] KIRSCHNER I N, KRING D C, STOKES A W, et al. Control strategies for supercavitating vehicles[J]. Journal of vibration and control, 2002, 8(2): 219-242.
[9] ZHAO Xinhua, ZHANG Xiaoyu, YE Xiufen, et al. Sliding mode controller design for supercavitating vehicles[J]. Ocean engineering, 2019, 184: 173-183.
[10] 范辉, 张宇文. 超空泡航行器稳定性分析及其非线性切换控制[J]. 控制理论与应用, 2009, 26(11): 1211-1217
FAN Hui, ZHANG Yuwen. Stability analysis and nonlinear switching controller design for supercavitating vehicles[J]. Control theory & applications, 2009, 26(11): 1211-1217
[11] 池海红, 于馥睿, 郭泽会. 基于强化学习的高速飞行器巡航段高度控制[J]. 哈尔滨工程大学学报, 2021, 42(9): 1340-1346,1362
CHI Haihong, YU Furui, GUO Zehui. Altitude control for high-speed vehicles in the cruise phase based on reinforcement learning[J]. Journal of Harbin Engineering University, 2021, 42(9): 1340-1346,1362
[12] MU Chaoxu, NI Zhen, SUN Changyin, et al. Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming[J]. IEEE transactions on neural networks and learning systems, 2017, 28(3): 584-598.
[13] 许雅筑, 武辉, 游科友, 等. 强化学习方法在自主水下机器人控制任务中的应用[J]. 中国科学:信息科学, 2020, 50(12): 1798-1816
HSU Yachu, WU Hui, YOU Keyou, et al. A selected review of reinforcement learning-based control for autonomous underwater vehicles[J]. Scientia sinica (informationis), 2020, 50(12): 1798-1816
[14] HAFNER R, RIEDMILLER M. Reinforcement learning in feedback control[J]. Machine learning, 2011, 84(1): 137-169.
[15] 王日中, 李慧平, 崔迪, 等. 基于深度强化学习算法的自主式水下航行器深度控制[J]. 智能科学与技术学报, 2020, 2(4): 354-360
WANG Rizhong, LI Huiping, CUI Di, et al. Depth control of autonomous underwater vehicle using deep reinforcement learning[J]. Chinese journal of intelligent science and technology, 2020, 2(4): 354-360
[16] LOGVINOVICH G V. Some Problems of supercavitating flows[C]// Proceedings of NATO-AGARD, [S. l. : s. n. ], 1997: 36?44.
[17] 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1-27
LIU Quan, ZHAI JianWei, ZHANG Zongzhang, et al. A survey on deep reinforcement learning[J]. Chinese journal of computers, 2018, 41(1): 1-27
[18] 袁兆麟, 何润姿, 姚超, 等. 基于强化学习的浓密机底流浓度在线控制算法[J]. 自动化学报, 2021, 47(7): 1558-1571
YUAN Zhaolin, HE Runzi, YAO Chao, et al. Online reinforcement learning control algorithm for concentration of thickener underflow[J]. Acta automatica sinica, 2021, 47(7): 1558-1571
[19] 严家政, 专祥涛. 基于强化学习的参数自整定及优化算法[J]. 智能系统学报, 2022, 17(2): 341-347
YAN Jiazheng, ZHUAN Xiangtao. Parameter self-tuning and optimization algorithm based on reinforcement learning[J]. CAAI transactions on intelligent systems, 2022, 17(2): 341-347
[20] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
[21] SUTTON R S, MCALLESTER D, SINGH S, et al. Policy gradient methods for reinforcement learning with function approximation[C]//Proceedings of the 12th International Conference on Neural Information Processing Systems. New York: ACM, 1999: 1057?1063.
[22] HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor[EB/OL]. (2018?01?04)[2021?01?01]. https://arxiv.org/abs/1801.01290.
[23] SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]//Proceedings of the 31st International Conference on International Conference on Machine Learning-Volume 32. New York: ACM, 2014: I?387.
[24] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. (2015?09?09)[2021?01?01]. https://arxiv.org/abs/1509.02971
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems