[1]ZHAO Wenqing,KANG Yijin,ZHAO Zhenbing,et al.A remote sensing image object detection algorithm with improved YOLOv5s[J].CAAI Transactions on Intelligent Systems,2023,18(1):86-95.[doi:10.11992/tis.202203013]
Copy

A remote sensing image object detection algorithm with improved YOLOv5s

References:
[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580?587.
[2] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440?1448.
[3] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779?788.
[5] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517?6525.
[6] FARHADI A, REDMON J. YOLOv3: an incremental improvement[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1804?2767.
[7] BOCHKOVSKIY A, WANG C Y, LIAO H M, et al. YOLOv4: optimal speed and accuracy of object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2?7.
[8] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936?944.
[9] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759?8768.
[10] 林娜, 冯丽蓉, 张小青. 基于优化Faster-RCNN的遥感影像飞机检测[J]. 遥感技术与应用, 2021, 36(2): 275–284
LIN Na, FENG Lirong, ZHANG Xiaoqing. Aircraft detection in remote sensing image based on optimized faster-RCNN[J]. Remote sensing technology and application, 2021, 36(2): 275–284
[11] 姚艳清, 程塨, 谢星星, 等. 多分辨率特征融合的光学遥感图像目标检测[J]. 遥感学报, 2021, 25(5): 1124–1137
YAO Yanqing, CHENG Gong, XIE Xingxing, et al. Optical remote sensing image object detection based on multi-resolution feature fusion[J]. National remote sensing bulletin, 2021, 25(5): 1124–1137
[12] 张晓雅, 李承政, 徐静杉, 等. 级联结构的遥感目标检测算法[J]. 计算机辅助设计与图形学学报, 2021, 33(10): 1524–1531
ZHANG Xiaoya, LI Chengzheng, XU Jingshan, et al. Cascaded object detection algorithm in remote sensing imagery[J]. Journal of computer-aided design & computer graphics, 2021, 33(10): 1524–1531
[13] 李婕, 周顺, 朱鑫潮, 等. 结合多通道注意力的遥感图像飞机目标检测[J]. 计算机工程与应用, 2022, 58(1): 209–217
LI Jie, ZHOU Shun, ZHU Xinchao, et al. Remote sensing image aircraft target detection combined with multiple channel attention[J]. Computer engineering and applications, 2022, 58(1): 209–217
[14] ZHANG Zixiao, LU Xiaoqiang, CAO Guojin, et al. ViT-YOLO: transformer-based YOLO for object detection[C]//2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 2799?2808.
[15] TAN Mingxing, PANG Ruoming, LE Q V. EfficientDet: scalable and efficient object detection[EB/OL]. (2019?11?20) [2022?02?12].https://arxiv.org/abs/1911.09070.
[16] ZHU Xingkui, LYU Shuchang, WANG Xu, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 2778?2788.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3?19.
[18] XU Xiangkai, FENG Zhejun, CAO Changqing, et al. An improved swin transformer-based model for remote sensing object detection and instance segmentation[J]. Remote sensing, 2021, 13(23): 4779.
[19] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision. Montrea: IEEE, 2021: 9992?10002.
[20] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531?11539.
[21] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132?7141.
[22] HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708?13717.
[23] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single Shot MultiBox Detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21?37.
[24] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999?3007.
[25] WANG Peijin, SUN Xian, DIAO Wenhui, et al. FMSSD: feature-merged single-shot detection for multiscale objects in large-scale remote sensing imagery[J]. IEEE transactions on geoscience and remote sensing, 2020, 58(5): 3377–3390.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems