[1]KANG Wenxuan,CHEN Lifei,GUO Gongde.Spatiotemporal structure feature representation model for motion sequences[J].CAAI Transactions on Intelligent Systems,2023,18(2):240-250.[doi:10.11992/tis.202203011]
Copy

Spatiotemporal structure feature representation model for motion sequences

References:
[1] 谭海龙. 多维时间序列的分类技术研究[D]. 杭州: 浙江 大学, 2015: 1?20.
TAN Hailong. Multivariate time series classification technology research[D]. Hanzhou: Zhejiang University, 2015: 1?20.
[2] 任守纲, 张景旭, 顾兴健, 等. 时间序列特征提取方法研究综述[J]. 小型微型计算机系统, 2021, 42(2): 271–278
REN Shougang, ZHANG Jingxu, GU Xingjian. Overview of feature extraction algorithm for time series[J]. Journal of Chinese mini-micro computer systems, 2021, 42(2): 271–278
[3] CORTES C, VAPNIK V, Support-vector networks[J]. Machine learning, 1995, 20: 273?297.
[4] 曹翰林, 唐海娜, 王飞, 等. 轨迹表示学习技术研究进展[J]. 软件学报, 2021, 32(5): 1461–1479
CAO Hanlin, TANG Haina, WANG Fei. Survey on trajectory representation learning techniques[J]. Journal of software, 2021, 32(5): 1461–1479
[5] RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of IEEE, 1989, 77: 257–286.
[6] 陈炳鑫, 陈黎飞. 符号序列的预训练HMM分类方法 [J]. 南京大学学报(自然科学版), 2021, 57(1): 52?58.
CHEN Bingxin, CHEN Lifei. A pre-training HMM classification method for symbolic sequences[J]. Journal of Nanjing University (natural science edition). 2021, 57(1): 52?58
[7] HYNDMAN R, KHANDAKAR Y. Automatic time series forecasting: the forecast package for R[J]. Journal of statistical software, 2008, 26(3): 1–22.
[8] YE L, KEOGH E J. Time series shapelets: a novel technique that allows accurate, interpretable and fast classification[J]. Data mining and knowledge discovery, 2010, 22(1-2): 149–182.
[9] XING Z, PEI J, KEOGH E. A brief survey on sequence classification[J]. SIGKDD exploration newsletter, 2010, 12(1): 40–48.
[10] GUO Gongde, CHEN Lifei, YE Yanfang, et al. Cluster validation method for determining the number of clusters in categorical sequences[J]. IEEE transactions on neural networks and learning systems, 2017, 28(12): 2936–2948.
[11] FINK G. Markov models for pattern recognition: from theory to applications[M]. New York: Springer, 2014: 119?201
[12] 钱爱玲. 复杂结构的时间序列数据挖掘与预测方法研究. [D]. 武汉: 华中科技大学, 2011: 13?17.
QIAN Ailing. Research on data mining and forecasting methods over time series with complex structure[D]. Wuhan: Huazhong University, 2011: 13?17.
[13] KASHIPAREKH K, NARWARIYA J, MALHOTRA P, et al. ConvTimeNet: a pre-trained deep convolutional neural network for time series classification[C] //Proc of the 2019 International Joint Conference on Neural Networks. Budapest: IEEE, 2019: 1?8.
[14] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735–80.
[15] ASHISD V, SHASZEER N, PARMAR N, et al. Attention is all you need[C]//Proc of the 31st International Conference on Neural Information Processing Systems. Long beach: Curran Associates Inc., 2017: 5998?6008.
[16] MAKRIDAKIS S, SPILIOTIS E, ASSIMAKOPOULOS V. Statistical and machine learning forecasting methods: Concerns and ways forward[J]. PLoS oNE, 2018, 13(3): e0194889.
[17] BERNDT D, CLIFFORD J. Using dynamic time warping to find patterns in time series[C]//Proc of the 3rd International Conference on Knowledge Discovery and Data Mining. Seattle: AAAI Press, 1994: 359?370.
[18] WANG Jichen, ZHU Weiguo, SUN Yongqi, et al. An effective dynamic spatiotemporal framework with external features information for traffic prediction[J]. Applied Intelligence, 2021, 51: 3159–3173.
[19] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proc of the 28th Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 802?810.
[20] SUNG W, JUN S, JAEKYUN M. TapNet: neural network augmented with task-adaptive projection for few-shot learning[C]//Proc. of the 36th International Conference on Machine Learning. Long Beach: Curran Associates Inc., 2019, 97: 7115?7123.
[21] XIONG Tengke, WANG Shengrui, JIANG Qingshan, et al. A novel variable-order Markov model for clustering categorical sequences[J]. IEEE transactions on knowledge and data engineering, 2014, 26(10): 2339–2353.
[22] BASU T, MURTHY C. A supervised term selection technique for effective test categorization[J]. International journal of machine learning and cybernetics, 2016, 7: 877–892.
[23] YUAN Liang, WANG Wenjian, CHEN Lifei. Two-stage pruning method for gram-based categorical sequence clustering[J]. International journal machine learning and cybernetics, 2019, 10: 631–640.
[24] DIAS D, MADEO R, ROCHA T, et al. Hand movement recognition for Brazilian Sign Language: a study using distance-based neural networks[C]//Proc of the 2009 International Joint Conference on Neural Networks. Atlanta: IEEE Computer Society, 2009: 697?704.
[25] BEZDEK J. Pattern recognition in handbook of fuzzy computation[M]. Bristol: IOP publishing Ltd., 1998: 1?30.
[26] DAVIDE A, ALESSANDRO G, LUCA O, et al. A public domain dataset for human activity recognition using smartphones[C]//Proc of 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges: Louvain-la-Neuve, 2013: 24?26.
[27] JENNIFER K, GARY W, SAMUEL M. Activity recognition using cell phone accelerometers[J]. ACM SIGKDD explorations newsletter, 2010, 12(2): 74–82.
[28] 程铃纺, 郭躬德, 陈黎飞 符号序列多阶Markov分类 [J]. 计算机应用, 2017, 37(7): 1977?1982
CHENG Lingfang, GUO Gongde, CHEN Lifei. Classification of symbolic sequences with multi-order Markov model[J]. Journal of computer applications. 2017, 37(7): 1977?1982.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems