[1]LI Bohan,GUO Maozu,ZHAO Lingling.Passenger flow prediction in urban areas based on residual networks with split attention mechanism[J].CAAI Transactions on Intelligent Systems,2022,17(4):839-848.[doi:10.11992/tis.202202014]
Copy

Passenger flow prediction in urban areas based on residual networks with split attention mechanism

References:
[1] GONG Yongshun, LI Zhibin, ZHANG Jian, et al. Network-wide crowd flow prediction of Sydney trains via customized online non-negative matrix factorization[C]//CIKM’18: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 1243?1252.
[2] MA Xiaolei, DAI Zhuang, HE Zhengbing, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818.
[3] SILVA R, KANG S M, AIROLDI E M. Predicting traffic volumes and estimating the effects of shocks in massive transportation systems[J]. Proceedings of the national academy of sciences of the United States of America, 2015, 112(18): 5643?5648.
[4] FLORIO L, MUSSONE L. Neural-network models for classification and forecasting of freeway traffic flow stability[J]. Control engineering practice, 1996, 4(2): 153–164.
[5] XU Yanyan, KONG Qingjie, KLETTE R, et al. Accurate and interpretable Bayesian MARS for traffic flow prediction[J]. IEEE transactions on intelligent transportation systems, 2014, 15(6): 2457–2469.
[6] CHEN Pota, CHEN Feng, QIAN Zhen. Road traffic congestion monitoring in social media with hinge-loss Markov random fields[C]//2014 IEEE International Conference on Data Mining. Shenzhen: IEEE, 2014: 80?89.
[7] ZHENG Yu, YI Xiuwen, LI Ming, et al. Forecasting fine-grained air quality based on big data[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015: 2267?2276.
[8] ZHAO Yi, LI Jianbo, MIAO Xin, et al. Urban crowd flow forecasting based on cellular network[C]//ACM TURC ’19: Proceedings of the ACM Turing Celebration Conference - China. New York: ACM, 2019: 1?5.
[9] HE Yuxin, LI Lishuai, ZHU Xinting, et al. Multi-graph convolutional-recurrent neural network (MGC-RNN) for short-term forecasting of transit passenger flow[J]. IEEE transactions on intelligent transportation systems, PP(99): 1?20.
[10] WEI Yu, CHEN Muchen. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks[J]. Transportation research part C:emerging technologies, 2012, 21(1): 148–162.
[11] LI Yang, WANG Xudong, SUN Shuo, et al. Forecasting short-term subway passenger flow under special events scenarios using multiscale radial basis function networks[J]. Transportation research part C:emerging technologies, 2017, 77: 306–328.
[12] FU Xiao, YU Guanyi, LIU Zhiyuan. Spatial-temporal convolutional model for urban crowd density prediction based on mobile-phone signaling data[J]. IEEE transactions on intelligent transportation systems, 2021, 13(2): 1–13.
[13] WANG Senzhang, MIAO Hao, LI Jiyue, et al. Spatio-temporal knowledge transfer for urban crowd flow prediction via deep attentive adaptation networks[J]. IEEE transactions on intelligent transportation systems, 2022, 23(5): 4695–4705.
[14] MA Jiaman, CHAN J, RAJASEGARAR S, et al. Multi-attention 3D residual neural network for origin-destination crowd flow prediction[C]//2020 IEEE International Conference on Data Mining. Sorrento: IEEE, 2020: 1160?1165.
[15] EBRAHIMPOUR, WAN, CERVANTES, et al. Comparison of main approaches for extracting behavior features from crowd flow analysis[J]. ISPRS international journal of geo-information, 2019, 8(10): 440.
[16] SMITH B L, DEMETSKY M J. Traffic flow forecasting: comparison of modeling approaches[J]. Journal of transportation engineering, 1997, 123(4): 261–266.
[17] BOX G, JENKINS G, REINSEL G. Time series analysis: forecasting and control. rev. ed[J]. Journal of marketing research, 1977, 14(2): 269.
[18] SMITH B L, WILLIAMS B M, KEITH OSWALD R. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation research part C:emerging technologies, 2002, 10(4): 303–321.
[19] ZHANG Junbo, ZHENG Yu, QI Dekang. Deep spatio-temporal residual networks for citywide crowd flows prediction[J]. Proceedings of the AAAI conference on artificial intelligence, 2017, 31(1): 1655–1661.
[20] SONG Xuan, ZHANG Quanshi, SEKIMOTO Y, et al. Prediction of human emergency behavior and their mobility following large-scale disaster[C]//KDD’14: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2014: 5?14.
[21] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[22] CHANDRA S R, AL-DEEK H. Predictions of freeway traffic speeds and volumes using vector autoregressive models[J]. Journal of intelligent transportation systems, 2009, 13(2): 53–72.
[23] QIN Tianxiang, LIU Tong, WU Hexiang, et al. RESGCN: RESidual graph convolutional network based free dock prediction in bike sharing system[C]//2020 21st IEEE International Conference on Mobile Data Management. Versailles: IEEE, 2020: 210?217.
[24] YAO Huaxiu, WU Fei, KE Jintao, et al. Deep multi-view spatial-temporal network for taxi demand prediction[J]. Proceedings of the AAAI conference on artificial intelligence, 2018, 32(1).
[25] ZHANG HANG, WU CHONGRUO, ZHANG ZHONGYUE, et al. ResNeSt: split-attention networks[EB/OL]. (2020?04?30)[2022?02?20]. https://www.researchgate.net/publication/340805846_resnest_split-attention_networks.
[26] XIE Saining, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5987?5995.
[27] YAMAMOTO M, SATO A, KAWADA S, et al. Incremental tracking of human actions from multiple views[C]//Proceedings of 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Santa Barbara: IEEE, 1998: 2?7.
[28] LECUN Y A, BOTTOU L, ORR G B, et al. Efficient BackProp[M]//Lecture Notes in Computer Science. Berlin: Springer Berlin Heidelberg, 2012: 9?48.
[29] LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 510?519.
[30] LI Yexin, ZHENG Yu, ZHANG Huichu, et al. Traffic prediction in a bike-sharing system[C]//SIGSPATIAL ’15: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2015: 1?10.
[31] WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7794?7803.
[32] ZHANG Junbo, ZHENG Yu, QI Dekang. 北京出租车数据集[EB/OL].[2022?02?20]. https://gitee.com/arislee/taxi-bj.
[33] LI Bohan. ST-SANet 算法代码[EB/OL].[2022?02?20]. https://gitee.com/arislee/st-sanet_-code.git
[34] ZHANG Junbo, ZHENG Yu, QI Dekang, et al. DNN-based prediction model for spatio-temporal data[C]//SIGSPACIAL’16: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2016: 1?4.
[35] ZHANG G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50: 159–175.
[36] ZHANG G P, QI Min. Neural network forecasting for seasonal and trend time series[J]. European journal of operational research, 2005, 160(2): 501–514.
[37] ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. (2014?09?08)[2022?02?20]. https: //arxiv. org/abs/1409.2329.
[38] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735–1780.
[39] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. (2014?06?03)[2022?02?20]. https: //arxiv. org/abs/1406.1078.
[40] DOUGHERTY M S, COBBETT M R. Short-term inter-urban traffic forecasts using neural networks[J]. International journal of forecasting, 1997, 13(1): 21–31.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems