[1]ZHAO Jingwen,LI Xuanpeng,ZHANG Weigong.Vehicle trajectory prediction method based on modeling of multi-agent interaction behavior[J].CAAI Transactions on Intelligent Systems,2023,18(3):480-488.[doi:10.11992/tis.202201022]
Copy

Vehicle trajectory prediction method based on modeling of multi-agent interaction behavior

References:
[1] SIVARAMAN S, TRIVEDI M M. Dynamic probabilistic drivability maps for lane change and merge driver assistance[J]. IEEE transactions on intelligent transportation systems, 2014, 15(5): 2063–2073.
[2] HELBING D, MOLNáR P. Social force model for pedestrian dynamics[J]. Physical review E, statistical physics, plasmas, fluids, and related interdisciplinary topics, 1995, 51(5): 4282–4286.
[3] 乔少杰, 金琨, 韩楠, 等. 一种基于高斯混合模型的轨迹预测算法[J]. 软件学报, 2015, 26(5): 1048–1063
QIAO Shaojie, JIN Kun, HAN Nan, et al. Trajectory prediction algorithm based on Gaussian mixture model[J]. Journal of software, 2015, 26(5): 1048–1063
[4] 高建, 毛莺池, 李志涛. 基于高斯混合-时间序列模型的轨迹预测[J]. 计算机应用, 2019, 39(8): 2261–2270
GAO Jian, MAO Yingchi, LI Zhitao. Trajectory prediction based on Gauss mixture time series model[J]. Journal of computer applications, 2019, 39(8): 2261–2270
[5] 乔少杰, 韩楠, 朱新文, 等. 基于卡尔曼滤波的动态轨迹预测算法[J]. 电子学报, 2018, 46(2): 418–423
QIAO Shaojie, HAN Nan, ZHU Xinwen, et al. A dynamic trajectory prediction algorithm based on Kalman filter[J]. Acta electronica sinica, 2018, 46(2): 418–423
[6] SCHULZ J, HUBMANN C, L?CHNER J, et al. Multiple model unscented Kalman filtering in dynamic Bayesian networks for intention estimation and trajectory prediction[C]//2018 21st International Conference on Intelligent Transportation Systems. Maui: IEEE, 2018: 1467?1474.
[7] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. Montreal: ACM, 2014: 3104–3112.
[8] 孔玮, 刘云, 李辉, 等. 基于深度学习的行人轨迹预测方法综述[J]. 控制与决策, 2021, 36(12): 2841–2850
KONG Wei, LIU Yun, LI Hui, et al. Survey of pedestrian trajectory prediction methods based on deep learning[J]. Control and decision, 2021, 36(12): 2841–2850
[9] JEONG Y, KIM S, YI K. Surround vehicle motion prediction using LSTM-RNN for motion planning of autonomous vehicles at multi-lane turn intersections[J]. IEEE open journal of intelligent transportation systems, 2020, 1: 2–14.
[10] ZHANG Pu, XUE Jianru, ZHANG Pengfei, et al. Social-aware pedestrian trajectory prediction via states refinement LSTM[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(5): 2742–2759.
[11] PSALTA A, TSIRONIS V, KARANTZALOS K, et al. Social pooling with edge convolutions on local connectivity graphs for human trajectory prediction in crowded scenes[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems. Rhodes: IEEE, 2020: 1?6.
[12] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 961?971.
[13] DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 1549?15498.
[14] MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Non-local social pooling for vehicle trajectory prediction[C]//2019 IEEE Intelligent Vehicles Symposium (IV). Paris: IEEE, 2019: 975?980.
[15] VEMULA A, MUELLING K, OH J. Social attention: modeling attention in human crowds[C]//2018 IEEE International Conference on Robotics and Automation. New York: ACM, 2018: 1–7.
[16] MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Attention based vehicle trajectory prediction[J]. IEEE transactions on intelligent vehicles, 2021, 6(1): 175–185.
[17] LIN Lei, LI Weizi, BI Huikun, et al. Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms[J]. IEEE intelligent transportation systems magazine, 2022, 14(2): 197–208.
[18] 孙亚圣, 姜奇, 胡洁, 等. 基于注意力机制的行人轨迹预测生成模型[J]. 计算机应用, 2019, 39(3): 668–674
SUN Yasheng, JIANG Qi, HU Jie, et al. Attention mechanism based pedestrian trajectory prediction generation model[J]. Journal of computer applications, 2019, 39(3): 668–674
[19] 李琳辉, 周彬, 连静, 等. 基于社会注意力机制的行人轨迹预测方法研究[J]. 通信学报, 2020, 41(6): 175–183
LI Linhui, ZHOU Bin, LIAN Jing, et al. Research on pedestrian trajectory prediction method based on social attention mechanism[J]. Journal on communications, 2020, 41(6): 175–183
[20] HUANG Yingfan, BI Huikun, LI Zhaoxin, et al. STGAT: modeling spatial-temporal interactions for human trajectory prediction[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 6271?6280.
[21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000–6010.
[22] MERCAT J, GILLES T, EL ZOGHBY N, et al. Multi-head attention for multi-modal joint vehicle motion forecasting[C]//2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 9638?9644.
[23] GIULIARI F, HASAN I, CRISTANI M, et al. Transformer networks for trajectory forecasting[C]//2020 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 10335?10342.
[24] FENG Xidong, CEN Zhepeng, HU Jianming, et al. Vehicle trajectory prediction using intention-based conditional variational autoencoder[C]//2019 IEEE Intelligent Transportation Systems Conference. Auckland: IEEE, 2019: 3514?3519.
[25] ROY D, ISHIZAKA T, MOHAN C K, et al. Vehicle trajectory prediction at intersections using interaction based generative adversarial networks[C]//2019 IEEE Intelligent Transportation Systems Conference. Auckland: IEEE, 2019: 2318?2323.
[26] GUPTA A, JOHNSON J, LI Feifei, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2255?2264.
[27] SADEGHIAN A, KOSARAJU V, SADEGHIAN A, et al. SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 1349?1358.
[28] LEE N, CHOI W, VERNAZA P, et al. DESIRE: distant future prediction in dynamic scenes with interacting agents[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2165?2174.
[29] MANGALAM K, GIRASE H, AGARWAL S, et al. It is not the journey but the destination: endpoint conditioned trajectory prediction[C]//Computer Vision – ECCV 2020: 16th European Conference. Glasgow: ACM, 2020: 759–776.
[30] KINGMA D P, MOHAMED S, REZENDE D J, et al. Semi-supervised learning with deep generative models[C]//Advances in Neural Information Processing Systems. Montreal: NIPS, 2014: 3581?3589.
[31] 陈希亮, 曹雷, 何明, 等. 深度逆向强化学习研究综述[J]. 计算机工程与应用, 2018, 54(5): 24–35
CHEN Xiliang, CAO Lei, HE Ming, et al. Overview of deep inverse reinforcement learning[J]. Computer engineering and applications, 2018, 54(5): 24–35
[32] COLYAR J, HALKIAS J. Us highway 101 dataset: federal highway administration research and technology fact sheet [EB/OL]. (2007?09?08)[2022?05?20].https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm.
[33] COLYAR J, HALKIAS J. Us highway 80 dataset, federal highway administration[EB/OL]. (2006?12?01) [2022?05?20].https://rosap.ntl.bts.gov/view/dot/38708.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems