[1]YAN He,LI Mengxue,ZHANG Yuning,et al.A ghost asymmetric residual attention network model for facial expression recognition[J].CAAI Transactions on Intelligent Systems,2023,18(2):333-340.[doi:10.11992/tis.202201003]
Copy

A ghost asymmetric residual attention network model for facial expression recognition

References:
[1] 贲晛烨, 杨明强, 张鹏, 等. 微表情自动识别综述[J]. 计算机辅助设计与图形学学报, 2014, 26(9): 1385–1395
BEN Xianye, YANG Mingqiang, ZHANG Peng, et al. Survey on automatic micro expression recognition methods[J]. Journal of computer-aided design & computer graphics, 2014, 26(9): 1385–1395
[2] LI Shan, DENG Weihong. Deep facial expression recognition: a survey[J]. IEEE transactions on affective computing, 2022, 13(3): 1195–1215.
[3] WANG Kai, PENG Xiaojiang, YANG Jianfei, et al. Suppressing uncertainties for large-scale facial expression recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6896?6905.
[4] RUAN Delian, YAN Yan, LAI Shenqi, et al. Feature decomposition and reconstruction learning for effective facial expression recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 7656?7665.
[5] 李勇, 林小竹, 蒋梦莹. 基于跨连接LeNet-5网络的面部表情识别[J]. 自动化学报, 2018, 44(1): 176–182
LI Yong, LIN Xiaozhu, JIANG Mengying. Facial expression recognition with cross-connect LeNet-5 network[J]. Acta automatica sinica, 2018, 44(1): 176–182
[6] 崔子越, 皮家甜, 陈勇, 等. 结合改进VGGNet和Focal Loss的人脸表情识别[J]. 计算机工程与应用, 2021, 57(19): 171–178
CUI Ziyue, PI Jiatian, CHEN Yong, et al. Facial expression recognition combined with improved VGGNet and focal loss[J]. Computer engineering and applications, 2021, 57(19): 171–178
[7] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[8] PHAM L, VU T H, TRAN T A. Facial expression recognition using residual masking network[C]//2020 25th International Conference on Pattern Recognition. Milan: IEEE, 2020: 4513?4519.
[9] 高涛, 杨朝晨, 陈婷, 等. 深度多尺度融合注意力残差人脸表情识别网络[J]. 智能系统学报, 2022, 17(2): 393–401
GAO Tao, YANG Zhaochen, CHEN Ting, et al. Deep multiscale fusion attention residual network for facial expression recognition[J]. CAAI transactions on intelligent systems, 2022, 17(2): 393–401
[10] 陈加敏, 徐杨. 注意力金字塔卷积残差网络的表情识别[J]. 计算机工程与应用, 2022, 58(22): 123–131
CHEN Jiamin, XU Yang. Expression Recognition Based on Convolution Residual Network of Attention Pyramid[J]. Computer engineering and applications, 2022, 58(22): 123–131
[11] DUTA I C, LIU LI, ZHU FAN, et al. Pyramidal convolution: rethinking convolutional neural networks for visual recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE, 2020.
[12] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510?4520.
[13] HAN Kai, WANG Yunhe, TIAN Qi, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577?1586.
[14] 刘超军, 段喜萍, 谢宝文. 应用GhostNet卷积特征的ECO目标跟踪算法改进[J]. 激光技术, 2022, 46(2): 239–247
LIU Chaojun, DUAN Xiping, XIE Baowen. Improvement of eco target tracking algorithm based on GhostNet convolution feature[J]. Laser technology, 2022, 46(2): 239–247
[15] 符惠桐, 王鹏, 李晓艳, 等. 面向移动目标识别的轻量化网络模型[J]. 西安交通大学学报, 2021, 55(7): 124–131
FU Huitong, WANG Peng, LI Xiaoyan, et al. Lightweight network model for moving object recognition[J]. Journal of Xi’an Jiaotong university, 2021, 55(7): 124–131
[16] WANG Fei, JIANG Mengqing, QIAN Chen, et al. Residual attention network for image classification[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6450?6458.
[17] MISRA D. Mish: a self regularized non-monotonic neural activation function[EB/OL]. (2020?08?13)[2021?01?01].https://arxiv.org/abs/1908.08681v1.
[18] HE Tong, ZHANG Zhi, ZHANG Hang, et al. Bag of tricks for image classification with convolutional neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 558?567.
[19] 崔珂璠, 熊淑华, 陈洪刚, 等. 基于非对称残差注意网络的目标跟踪算法[J]. 微电子学与计算机, 2021, 38(9): 8–16
CUI Kefan, XIONG Shuhua, CHEN Honggang, et al. An object tracking algorithm based on asymmetric residual attention network[J]. Microelectronics & computer, 2021, 38(9): 8–16
[20] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2818?2826.
[21] MINAEE S, MINAEI M, ABDOLRASHIDI A. Deep-emotion: facial expression recognition using attentional convolutional network[J]. Sensors, 2021, 21(9): 3046.
[22] SHI Cuiping, TAN Cong, WANG Liguo. A facial expression recognition method based on a multibranch cross-connection convolutional neural network[J]. IEEE access, 2021, 9: 39255–39274.
[23] JUNG H, LEE S, YIM J, et al. Joint fine-tuning in deep neural networks for facial expression recognition[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 2983?2991.
[24] YANG Huiyuan, CIFTCI U, YIN Lijun. Facial expression recognition by de-expression residue learning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2168?2177.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems