[1]TANG Jialu,YANG Zhongliang,ZHANG Song,et al.Detection of yarn hairiness combining microscopic vision and attention mechanism[J].CAAI Transactions on Intelligent Systems,2022,17(6):1209-1219.[doi:10.11992/tis.202112035]
Copy

Detection of yarn hairiness combining microscopic vision and attention mechanism

References:
[1] 孙建奎, 王勃. 165dtex/36f涤纶FDY绊丝产生原因分析及对策[J]. 合成纤维, 2021, 50(10): 4–7
SUN Jiankui, WANG Bo. Discussion on the causes and countermeasures of overthrown yarn with 165 dtex/36 f polyester FDY[J]. Synthetic fiber in China, 2021, 50(10): 4–7
[2] 赵博. 减少纯化纤纱毛羽的研究与探讨[J]. 化纤与纺织技术, 2007, 36(4): 11–15
ZHAO Bo. Discussion and research of reducing the pure chemical fibre yarn hairiness[J]. Chemical fiber & textile technology, 2007, 36(4): 11–15
[3] ARENTS J, GREITANS M. Smart industrial robot control trends, challenges and opportunities within manufacturing[J]. Applied sciences, 2022, 12(2): 937.
[4] TOUNSADI H, METARFI Y, TALEB M, et al. Impact of chemical substances used in textile industry on the employee’s health: Epidemiological study[J]. Ecotoxicology and environmental safety, 2020, 197: 110594.
[5] RASMUSSE J. Human error mechanisms in complex work environments[J]. Reliability engineering & system safety, 1988, 22(1/2/3/4): 155–167.
[6] ACEMOGLU D, RESTREPO P. The race between man and machine: implications of technology for growth, factor shares, and employment[J]. American economic review, 2018, 108(6): 1488–1542.
[7] FABIJA?SKA A, JACKOWSKA-STRUMI??O L. Image processing and analysis algorithms for yarn hairiness determination[J]. Machine vision and applications, 2012, 23(3): 527–540.
[8] BISSI L, BARUFFA G, PLACIDI P, et al. Patch based yarn defect detection using Gabor filters[C]//2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings. Graz: IEEE, 2012: 240-244.
[9] 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(3): 82–88
LI Dongjie, GUO Shuai, YANG Liu. Yarn defect detection based on improved image threshold segmentation algorithm[J]. Journal of textile research, 2021, 42(3): 82–88
[10] 李彦, 朱凌云. 基于图像处理的纽扣轮廓瑕疵检测[J]. 东华大学学报(自然科学版), 2021, 47(4): 69–74,134
LI Yan, ZHU Lingyun. Detection of button contour defects based on image processing[J]. Journal of Donghua University (natural science edition), 2021, 47(4): 69–74,134
[11] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[12] 车翔玖, 刘华罗, 邵庆彬. 基于Fast RCNN改进的布匹瑕疵识别算法[J]. 吉林大学学报(工学版), 2019, 49(6): 2038–2044
CHE Xiangjiu, LIU Hualuo, SHAO Qingbin. Fabric defect recognition algorithm based on improved Fast RCNN[J]. Journal of Jilin University (engineering and technology edition), 2019, 49(6): 2038–2044
[13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[14] 唐有赟, 盛晓伟, 徐洋, 等. 基于轻量级模型的经编布瑕疵在线检测算法[J]. 东华大学学报(自然科学版), 2020, 46(6): 922–928
TANG Youyun, SHENG Xiaowei, XU Yang, et al. Online defect detection algorithm of warp knitting fabric based on lightweight model[J]. Journal of Donghua University (natural science edition), 2020, 46(6): 922–928
[15] 王泽霞, 陈革, 陈振中. 基于改进卷积神经网络的化纤丝饼表面缺陷识别[J]. 纺织学报, 2020, 41(4): 39–44
WANG Zexia, CHEN Ge, CHEN Zhenzhong. Surface defect recognition of chemical fiber yarn packages based on improved convolutional neural network[J]. Journal of textile research, 2020, 41(4): 39–44
[16] 张君扬, 景军锋. 应用激光三角测量法的化纤丝饼毛羽检测[J]. 西安工程大学学报, 2020, 34(3): 19–25
ZHANG Junyang, JING Junfeng. Hairiness detection of chemical fiber DTY packages using laser triangulation[J]. Journal of Xi’an Polytechnic University, 2020, 34(3): 19–25
[17] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
[18] 徐德. 显微视觉测量与控制[M]. 北京: 国防工业出版社, 2014.
[19] GESSERT N, BENGS M, WITTIG L, et al. Deep transfer learning methods for colon cancer classification in confocal laser microscopy images[J]. International journal of computer assisted radiology and surgery, 2019, 14(11): 1837–1845.
[20] 路凯, 钟跃崎, 朱俊平, 等. 基于视觉词袋模型的羊绒与羊毛快速鉴别方法[J]. 纺织学报, 2017, 38(7): 130–134,141
LU Kai, ZHONG Yueqi, ZHU Junping, et al. Rapid identification method of cashmere and wool based on bag-of-visual-word[J]. Journal of textile research, 2017, 38(7): 130–134,141
[21] KISANTAL M, WOJNA Z, MURAWSKI J, et al. Augmentation for small object detection[EB/OL].(2019-04-16)[2021-12-15].https://arxiv.org/abs/1902.07296v1.
[22] TONG Kang, WU Yiquan, ZHOU Fei. Recent advances in small object detection based on deep learning: a review[J]. Image and vision computing, 2020, 97: 103910.
[23] MA Xinshu, LI Xiaohuan, TANG Xin, et al. Deconvolution Feature Fusion for traffic signs detection in 5G driven unmanned vehicle[J]. Physical communication, 2021, 47: 101375.
[24] HAN Chaojun, SHEN Fumin, LIU Li, et al. Visual spatial attention network for relationship detection[C]//MM’18: Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 510-518.
[25] 赵文清, 周震东, 翟永杰. 基于反卷积和特征融合的SSD小目标检测算法[J]. 智能系统学报, 2020, 15(2): 310–316
ZHAO Wenqing, ZHOU Zhendong, ZHAI Yongjie. SSD small target detection algorithm based on deconvolution and feature fusion[J]. CAAI transactions on intelligent systems, 2020, 15(2): 310–316
[26] ZHOU XINGYI, WANG DEQUAN, KR?HENBüHL P. Objects as points[EB/OL].(2019-02-19)[2021-12-15]. https://arxiv.org/abs/1904.07850.
[27] NAZIR T, NAWAZ M, RASHID J, et al. Detection of diabetic eye disease from retinal images using a deep learning based CenterNet model[J]. Sensors (Basel, Switzerland), 2021, 21(16): 5283.
[28] 张宸嘉, 朱磊, 俞璐. 卷积神经网络中的注意力机制综述[J]. 计算机工程与应用, 2021, 57(20): 64–72
ZHANG Chenjia, ZHU Lei, YU Lu. Review of attention mechanism in convolutional neural networks[J]. Computer engineering and applications, 2021, 57(20): 64–72
[29] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[30] 江培营, 陶青川, 艾梦琴. 基于注意力机制和深度学习的钢板表面缺陷图像分类[J]. 计算机应用与软件, 2021, 38(9): 214–219
JIANG Peiying, TAO Qingchuan, AI Mengqin. Steel surface defect image classification based on attention mechanism and deep learning[J]. Computer applications and software, 2021, 38(9): 214–219
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems