[1]LI Junhuai,WU Yunwen,WANG Huaijun,et al.Knowledge graph representation learning model combining entity description and path information[J].CAAI Transactions on Intelligent Systems,2023,18(1):153-161.[doi:10.11992/tis.202112010]
Copy

Knowledge graph representation learning model combining entity description and path information

References:
[1] XIE Ruobing, LIU Zhiyuan, JIA Jia, et al. Representation learning of knowledge graphs with entity descriptions[J]. Proceedings of the AAAI conference on artificial intelligence, 2016, 30(1): 2659–2665.
[2] 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2): 247–261
LIU Zhiyuan, SUN Maosong, LIN Yankai, et al. Knowledge representation learning: a review[J]. Journal of computer research and development, 2016, 53(2): 247–261
[3] 李涛, 王次臣, 李华康. 知识图谱的发展与构建[J]. 南京理工大学学报, 2017, 41(1): 22–34
LI Tao, WANG Cichen, LI Huakang. Development and construction of knowledge graph[J]. Journal of Nanjing University of Science and Technology, 2017, 41(1): 22–34
[4] 张正航, 钱育蓉, 行艳妮, 等. 基于TransE的表示学习方法研究综述[J]. 计算机应用研究, 2021, 38(3): 656–663
ZHANG Zhenghang, QIAN Yurong, XING Yanni, et al. Survey of representation learning methods based on TransE[J]. Application research of computers, 2021, 38(3): 656–663
[5] LIN Yankai, LIU Zhiyuan, LUAN Huanbo, et al. Modeling relation paths for representation learning of knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal. Stroudsburg: Association for Computational Linguistics, 2015: 705?714.
[6] YANG Bishan, YIH W T, HE Xiaodong, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. (2014?12?20) [2021?12?01].https://arxiv.org/abs/1412.6575.
[7] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//ICML’16: Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48. New York: ACM, 2016: 2071?2080.
[8] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans: AAAI Press, 2018, 32(1): 1811?1818.
[9] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). New Orleans: Association for Computational Linguistics, 2018: 327?333.
[10] 王智悦, 于清, 王楠, 等. 基于知识图谱的智能问答研究综述[J]. 计算机工程与应用, 2020, 56(23): 1–11
WANG Zhiyue, YU Qing, WANG Nan, et al. Survey of intelligent question answering research based on knowledge graph[J]. Computer engineering and applications, 2020, 56(23): 1–11
[11] LIU Yinhan, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. (2019?7?26)[2021?12?01].https://arxiv.org/abs/1907.11692.
[12] ZHU Yao, LIU Hongzhi, WU Zhonghai, et al. Representation learning with ordered relation paths for knowledge graph completion[EB/OL]. (2019?09?26) [2021?12?01].https://arxiv.org/abs/1909.11864.
[13] 缴霖境, 闫威. 融合实体概念描述与图像特征的知识图谱表示学习研究[J]. 计算机应用研究, 2021, 38(6): 1759–1764
JIAO Linjing, YAN Wei. Research on knowledge graph representation learning combining entity concept description and image features[J]. Application research of computers, 2021, 38(6): 1759–1764
[14] XIE Ruobing, LIU Zhiyuan, SUN Maosong. Representation learning of knowledge graphs with hierarchical types[C]//IJCAI’16: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York: ACM, 2016: 2965?2971.
[15] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[M]//The Semantic Web. Cham: Springer International Publishing, 2018: 593?607.
[16] BORDES A, USUNIER N, GARCIA-DURáN A, et al. Translating embeddings for modeling multi-relational data[C]//NIPS’13: Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2. New York: ACM, 2013: 2787?2795.
[17] CAI Liwei, WANG W Y. KBGAN: adversarial learning for knowledge graph embeddings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans: Association for Computational Linguistics, 2018: 1470?1480.
[18] SUN Zhiqing, DENG Zhihong, NIE Jianyun, et al. RotatE: knowledge graph embedding by relational rotation in complex space[EB/OL]. (2018?09?27)[2021?12?01].https://www.semanticscholar.org/paper/RotatE%3A-Knowledge-Graph-Embedding-by-Relational-in-Sun-Deng/8f096071a09701012c9c279aee2a88143a295935.
[19] JIANG Xiaotian, WANG Quan, WANG Bin. Adaptive convolution for multi-relational learning[C]//Proceedings of the 2019 Conference of the North. Minneapolis: Association for Computational Linguistics, 2019: 978?987.
[20] BALAZEVIC I, ALLEN C, HOSPEDALES T. TuckER: tensor factorization for knowledge graphcompletion[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019: 5184?5193.
[21] ZHANG Zhanqiu, CAI Jianyu, ZHANG Yongdong, et al. Learning hierarchy-aware knowledge graph embeddings for link prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI Press, 2020, 34(3): 3065?3072.
[22] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI Press, 2020, 34(3): 3009?3016.
[23] YE Rui, LI Xin, FANG Yujie, et al. A vectorized relational graph convolutional network for multi-relational network alignment[EB/OL]. (2019?08?01)[2021?12?01].https://www.semanticscholar.org/paper/A-Vectorized-Relational-Graph-Convolutional-Network-Ye-Li/d6adbd838cb69d3694659bde7c1bf464a8438caf.
[24] KAZEMI S M, POOLE D. SimplE embedding for link prediction in knowledge graphs[EB/OL]. (2018?02?13)[2021?12?01].https://www.semanticscholar.org/paper/SimplE-Embedding-for-Link-Prediction-in-Knowledge-Kazemi-Poole/70af3ee98c53441d9090119f7b76efb1b6d03edd.
[25] NIU Guanglin, ZHANG Yongfei, LI Bo, et al. Rule-guided compositional representation learning on knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI Press, 2020, 34(3): 2950?2958.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems