[1]LUO Yanlong,BI Xiaojun,WU Licheng,et al.Dongba pictographs recognition based on improved residual learning[J].CAAI Transactions on Intelligent Systems,2022,17(1):79-87.[doi:10.11992/tis.202112009]
Copy

Dongba pictographs recognition based on improved residual learning

References:
[1] GUO Hai, ZHAO Jingying, LI Xiaoniu. Preprocessing method for NaXi pictographs character recognition using wavelet transform[J]. International journal of digital content technology and its applications, 2010, 4(3): 117–131.
[2] GUO Hai, ZHAO Jingying. Research on feature extraction for character recognition of NaXi pictograph[J]. Journal of computers, 2011, 6(5): 947–954.
[3] DA Mingjun, ZHAO Jingying, SUO Guojie, et al. Online handwritten Naxi pictograph digits recognition system using coarse grid[C]//Computer science for environmental engineering and EcoInformatics. Berlin, German: Springer, 2011: 390?396.
[4] HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE transactions on neural networks, 2002, 13(2): 415–425.
[5] BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1): 5–32.
[6] 徐小力, 蒋章雷, 吴国新, 等. 基于拓扑特征和投影法的东巴象形文识别方法研究[J]. 电子测量与仪器学报, 2017, 31(1): 150–154
XU Xiaoli, JIANG Zhanglei, WU Guoxin, et al. Identification method of Dongba pictograph based on topological characteristic and projection method[J]. Journal of electronic measurement and instrumentation, 2017, 31(1): 150–154
[7] 杨玉婷, 康厚良. 东巴象形文字特征曲线提取算法研究[J]. 图学学报, 2019, 40(3): 591–599
YANG Yuting, KANG Houliang. Research on the extracting algorithm of dongba hieroglyphic feature curves[J]. Journal of graphics, 2019, 40(3): 591–599
[8] 张泽晖. 基于卷积神经网络的东巴文字分类与识别[D]. 昆明: 云南大学, 2019.
ZHANG Zehui. Classification and recognition of dongba characters based on convolutional neural network[D]. Kunming: Yunnan University, 2019.
[9] WU Guoxin, LIU Xiuli, JIANG Zhanglei, et al. Dongba classical ancient books image classification method based on ReN-Softplus convolution residual neural network[C]//2019 14th IEEE International Conference on Electronic Measurement & Instruments. New York, USA: IEEE, 2019: 398?404.
[10] 谢裕睿, 董建娥. 基于ResNet网络的东巴象形文字识别研究[J]. 计算机时代, 2021(1): 6–10
XIE Yurui, DONG Jian’e. Research on Dongba hieroglyph recognition using ResNet network[J]. Computer era, 2021(1): 6–10
[11] 李霖灿. 纳西族象形标音文字字典[M]. 昆明: 云南民族出版社, 2001.
LI Lincan. Naxi Pictographs and Transcription Characters Dictionary[M]. Kunming: Yunnan Nationalities Publishing House, 2001.
[12] 方国瑜, 和志武. 纳西象形文字谱[M]. 昆明: 云南人民出版社, 1981.
FANG Guoyu, HE Zhiwu. Naxi pictograph character chart[M]. Kunming: Yunnan People’s Publishing House, 1981.
[13] BUSLAEV A, PARINOV A, KHVEDCHENYA E, et al. Albumentations: fast and flexible image augmentations[EB/OL]. (2018-09-18) [2021-11-30].https://arxiv.org/abs/1809.06839.
[14] ZHANG Hongyi, MOUSTAPHA Cisseet, YANN N Dauphin, et al. Mixup: beyond empirical risk minimization[EB/OL]. (2017-10-25) [2021-11-30].https://arxiv.org/abs/1710.09412.
[15] DAN Hendrycks, NORMAN Mu, EKIN D Cubuk, et al. AugMix: A simple data processing method to improve robustness and uncertainty[EB/OL]. (2019-12-05) [2021-11-30].https://arxiv.org/abs/1912.02781.
[16] HE Tong, ZHANG Zhi, ZHANG Hang, et al. Bag of tricks for image classification with convolutional neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2019: 558?567.
[17] KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial intelligence review, 2020, 53(8): 5455–5516.
[18] XIE Saining, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2017: 5987?5995.
[19] TAN Mingxing, LE Quoc V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. (2019-05-28) [2021-11-30].https://arxiv.org/abs/1905.11946.
[20] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 770?778.
[21] LIN Min, CHEN Qiang, YAN Shuicheng. Network in network[EB/OL]. (2013-12-16) [2021-11-30].https://arxiv.org/abs/1312.4400.
[22] HUANG Gao, LIU Shichen, MAATEN L V D, et al. CondenseNet: an efficient DenseNet using learned group convolutions[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2018: 2752?2761.
[23] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04) [2021-11-30].https://arxiv.org/abs/1409.1556v3.
[24] IOFFE Sergey, SZEGEDY Christian. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]//2015 International Conference on Machine Learning. New York, USA: ACM, 2015: 448?456.
[25] VINOD Nair, GEOFFREY E Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines[C]//2010 International Conference on Machine Learning. New York, USA: ACM, 2010: 807?814.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems