[1]ZHOU Fangbo,ZHAO Huailin,LIU Huaping.Indoor mobile robot target search based on the scene graphs[J].CAAI Transactions on Intelligent Systems,2022,17(5):1032-1038.[doi:10.11992/tis.202109011]
Copy

Indoor mobile robot target search based on the scene graphs

References:
[1] 张毅, 陈起, 罗元. 室内环境下移动机器人三维视觉SLAM[J]. 智能系统学报, 2015, 10(4): 615–619
ZHANG Yi, CHEN Qi, LUO Yuan. Three dimensional visual SLAM for mobile robots in indoor environments[J]. CAAI transactions on intelligent systems, 2015, 10(4): 615–619
[2] ZHU Yuke, MOTTAGHI R, KOLVE E, et al. Target-driven visual navigation in indoor scenes using deep reinforcement learning[C]//2017 IEEE International Conference on Robotics and Automation. Singapore. IEEE, 2017: 3357–3364.
[3] WORTSMAN M, EHSANI K, RASTEGARI M, et al. Learning to learn how to learn: self-adaptive visual navigation using meta-learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, IEEE, 2019: 6743–6752.
[4] MOUSAVIAN A, TOSHEV A, FI?ER M, et al. Visual representations for semantic target driven navigation[C]//2019 International Conference on Robotics and Automation (ICRA). Montreal, IEEE, 2019: 8846–8852.
[5] 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1–27
LIU Quan, ZHAI JianWei, ZHANG ZongZhang, et al. A survey on deep reinforcement learning[J]. Chinese journal of computers, 2018, 41(1): 1–27
[6] CODEVILLA F, MüLLER M, LóPEZ A, et al. End-to-end driving via conditional imitation learning[C]//2018 IEEE International Conference on Robotics and Automation. Brisbane, IEEE, 2018: 4693–4700.
[7] 贺超, 刘华平, 孙富春, 等. 采用Kinect的移动机器人目标跟踪与避障[J]. 智能系统学报, 2013, 8(5): 426–432
HE Chao, LIU Huaping, SUN Fuchun, et al. Target tracking and obstacle avoidance of mobile robot using Kinect[J]. CAAI transactions on intelligent systems, 2013, 8(5): 426–432
[8] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]//ICML’16: Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48. New York: ACM, 2016: 1928–1937.
[9] 蔡军, 陈科宇, 张毅. 基于Kinect的改进移动机器人视觉SLAM[J]. 智能系统学报, 2018, 13(5): 734–740
CAI Jun, CHEN Keyu, ZHANG Yi. Improved V-SLAM for mobile robots based on Kinect[J]. CAAI transactions on intelligent systems, 2018, 13(5): 734–740
[10] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[C]//Proceedings of 1985 IEEE International Conference on Robotics and Automation. St. Louis, IEEE, 1985: 500–505.
[11] FUENTES-PACHECO J, RUIZ-ASCENCIO J, RENDóN-MANCHA J M. Visual simultaneous localization and mapping: a survey[J]. Artificial intelligence review, 2015, 43(1): 55–81.
[12] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE transactions on systems science and cybernetics, 1968, 4(2): 100–107.
[13] BERKHEMER O A, FRANSEN P S S, BEUMER D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke[J]. New England journal of medicine, 2015, 372(1): 11–20.
[14] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The international journal of robotics research, 2011, 30(7): 846–894.
[15] DU Heming, YU Xin, ZHENG Liang. Learning Object Relation Graph and Tentative Policy for Visual Navigation[C]//European Conference on Computer Vision. Cham: Springer, 2020: 19-34.
[16] DRUON R, YOSHIYASU Y, KANEZAKI A, et al. Visual object search by learning spatial context[J]. IEEE robotics and automation letters, 2020, 5(2): 1279–1286.
[17] QIU Y, PAL A, CHRISTENSEN H I. Learning hierarchical rela-tionships for object-goal navigation[C]//2020 Conference on Robot Learning (CoRL), Cambridge MA, USA, 2020: 503–514.
[18] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, IEEE, 2016: 770–778.
[19] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision. Venice, Italy. IEEE, 2017: 2980–2988.
[20] KRISHNA R, ZHU Yuke, GROTH O, et al. Visual genome: connecting language and vision using crowdsourced dense image annotations[J]. International journal of computer vision, 2017, 123(1): 32–73.
[21] ZHANG Chengyao, ZHANG Xuqing, WANG Minshui, et al. A shale gas exploitation platform detection and positioning method based on YOLOv5[C]//2021 3rd International Conference on Intelligent Control, Measurement and Signal Processing and Intelligent Oil Field (ICMSP). Xi’an, IEEE, 2021: 459–464.
[22] LIN Tsungyi, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[C]//European conference on computer vision. Springer, Cham. 2014: 740–755.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems