[1]JIA Heming,LIU Qingxin,LIU Yuxiang,et al.Hybrid Aquila and Harris hawks optimization algorithm with dynamic opposition-based learning[J].CAAI Transactions on Intelligent Systems,2023,18(1):104-116.[doi:10.11992/tis.202108031]
Copy

Hybrid Aquila and Harris hawks optimization algorithm with dynamic opposition-based learning

References:
[1] 贾鹤鸣, 李瑶, 孙康健. 基于遗传乌燕鸥算法的同步优化特征选择[J]. 自动化学报, 2022, 48(6): 1601–1615
JIA Heming, LI Yao, SUN Kangjian. Simultaneous feature selection optimization based on hybrid sooty tern optimization algorithm and genetic algorithm[J]. Acta automatica sinica, 2022, 48(6): 1601–1615
[2] 贾鹤鸣, 姜子超, 李瑶. 基于改进秃鹰搜索算法的同步优化特征选择[J]. 控制与决策, 2022, 37(2): 445–454
JIA Heming, JIANG Zichao, LI Yao. Simultaneous feature selection optimization based on improved bald eagle search algorithm[J]. Control and decision, 2022, 37(2): 445–454
[3] 贾鹤鸣, 姜子超, 李瑶, 等. 基于改进斑点鬣狗优化算法的同步优化特征选择[J]. 计算机应用, 2021, 41(5): 1290–1298
JIA Heming, JIANG Zichao, LI Yao, et al. Simultaneous feature selection optimization based on improved spotted hyena optimizer algorithm[J]. Journal of computer applications, 2021, 41(5): 1290–1298
[4] 贾鹤鸣, 刘宇翔, 刘庆鑫, 等. 融合随机反向学习的黏菌与算术混合优化算法[J]. 计算机科学与探索, 2022, 16(5): 1182–1192
JIA Heming, LIU Yuxiang, LIU Qingxin, et al. Hybrid algorithm of slime mould algorithm and arithmetic optimization algorithm based on random opposition-based learning[J]. Journal of frontiers of computer science and technology, 2022, 16(5): 1182–1192
[5] KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J]. Multimedia tools and applications, 2021, 80(5): 8091–8126.
[6] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95 - International Conference on Neural Networks. Perth: IEEE, 1995: 1942?1948.
[7] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46–61.
[8] MIRJALILI S, MIRJALILI S M, HATAMLOU A. Multi-verse optimizer: a nature-inspired algorithm for global optimization[J]. Neural computing and applications, 2016, 27(2): 495–513.
[9] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-based systems, 2016, 96: 120–133.
[10] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in engineering software, 2016, 95: 51–67.
[11] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in engineering software, 2017, 114: 163–191.
[12] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future generation computer systems, 2019, 97: 849–872.
[13] ABUALIGAH L, YOUSRI D, ABD ELAZIZ M, et al. Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers & industrial engineering, 2021, 157: 107250.
[14] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE transactions on evolutionary computation, 1997, 1(1): 67–82.
[15] AL-QANESS M A A, EWEES A A, FAN Hong, et al. Modified Aquila optimizer for forecasting oil production[J]. Geo-spatial information science, 2022, 25(4): 519–535.
[16] LI Xiaoyan, MOBAYEN S. Optimal design of a PEMFC-based combined cooling, heating and power system based on an improved version of Aquila optimizer[J]. Concurrency and computation:practice and experience, 2022, 34(15): e6976.
[17] 刘小龙, 梁彤缨. 基于方形邻域和随机数组的哈里斯鹰优化算法[J/OL]. 控制与决策, 2021. [2021?08?19]. https: //doi. org/10.13195/j. kzyjc. 2021.0478.
LIU Xiaolong, LIANG Tongying. Harris hawk optimization Algorithm based on square neighborhood and random array[J/OL]. Control and decision, 2021. [2021?08?19].https://doi.org/10.13195/j.kzyjc.2021.0478.
[18] SUN Pu, LIU Hao, ZHANG Yong, et al. An improved atom search optimization with dynamic opposite learning and heterogeneous comprehensive learning[J]. Applied soft computing, 2021, 103: 107140.
[19] HOUSSEIN E H, HUSSAIN K, ABUALIGAH L, et al. An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation[J]. Knowledge-based systems, 2021, 229: 107348.
[20] FAN Qian, CHEN Zhenjian, XIA Zhanghua. A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems[J]. Soft computing, 2020, 24(19): 14825–14843.
[21] TAHERI A, RAHIMIZADEH K, RAO R V. An efficient balanced teaching-learning-based optimization algorithm with individual restarting strategy for solving global optimization problems[J]. Information sciences, 2021, 576: 68–104.
[22] GANDOMI A H, YANG Xinshe, ALAVI A H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems[J]. Engineering with computers, 2013, 29(1): 17–35.
[23] YILDIZ B S, PHOLDEE N, BUREERAT S, et al. Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems[J]. Engineering with computers, 2022, 38(5): 4207–4219.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems