[1]WANG Wenhui,LIU Yanlong.Retinal vascular image segmentation based on residual channel attention[J].CAAI Transactions on Intelligent Systems,2023,18(6):1268-1274.[doi:10.11992/tis.202107063]
Copy

Retinal vascular image segmentation based on residual channel attention

References:
[1] MENDONCA A M, CAMPILHO A. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction[J]. IEEE transactions on medical imaging, 2006, 25(9): 1200–1213.
[2] FAN Zhun, LU Jiewei, WEI Caimin, et al. A hierarchical image matting model for blood vessel segmentation in fundus images[J]. IEEE transactions on image processing, 2019, 28(5): 2367–2377.
[3] YOU Xinge, PENG Qinmu, YUAN Yuan, et al. Segmentation of retinal blood vessels using the radial projection and semi-supervised approach[J]. Pattern recognition, 2011, 44(10/11): 2314–2324.
[4] AL-DIRI B, HUNTER A, STEEL D. An active contour model for segmenting and measuring retinal vessels[J]. IEEE transactions on medical imaging, 2009, 28(9): 1488–1497.
[5] STAAL J, ABRAMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE transactions on medical imaging, 2004, 23(4): 501–509.
[6] SOARES J V B, LEANDRO J J G, CESAR R M, et al. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification[J]. IEEE transactions on medical imaging, 2006, 25(9): 1214–1222.
[7] FAN Zhun, MO Jiajie. Automated blood vessel segmentation based on de-noising auto-encoder and neural network[C]//2016 International Conference on Machine Learning and Cybernetics. Jeju: IEEE, 2017: 849-856.
[8] 韩璐,毕晓君. 多尺度特征融合网络的视网膜OCT图像分类[J]. 智能系统学报, 2022, 17(2): 360–367
HAN Lu, BI Xiaojun. Retinal optical coherence tomography image classification based on multiscale feature fusion[J]. CAAI transactions on intelligent systems, 2022, 17(2): 360–367
[9] FAN Zhun, RONG Yibiao, LU Jiewei, et al. Automated blood vessel segmentation in fundus image based on integral channel features and random forests[C]//2016 12th World Congress on Intelligent Control and Automation. Guilin: IEEE, 2016: 2063-2068.
[10] OLIVEIRA A, PEREIRA S, SILVA C A. Retinal vessel segmentation based on fully convolutional neural networks[J]. Expert systems with applications, 2018, 112: 229–242.
[11] ZHANG Yishuo, CHUNG A C S. Deep supervision with additional labels for retinal vessel segmentation task[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2018: 83-91.
[12] WU Yicheng, XIA Yong, SONG Yang, et al. Multiscale network followed network model for retinal vessel segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2018: 119-126.
[13] FU Huazhu, XU Yanwu, LIN S, et al. DeepVessel: retinal vessel segmentation via deep learning and conditional random field[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2016: 132-139.
[14] WANG Bo, QIU Shuang, HE Huiguang. Dual encoding U-net for retinal vessel segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2019: 84-92.
[15] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
[16] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European conference on computer vision. Munich: Springer, 2018: 3-19.
[17] GUO Changlu, SZEMENYEI M, PEI Yang, et al. SD-unet: a structured dropout U-net for retinal vessel segmentation[C]//2019 IEEE 19th International Conference on Bioinformatics and Bioengineering. Athens: IEEE, 2019: 439-444.
[18] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[19] ORLANDO J I, PROKOFYEVA E, BLASCHKO M B. A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images[J]. IEEE transactions on biomedical engineering, 2017, 64(1): 16–27.
[20] LISKOWSKI P, KRAWIEC K. Segmenting retinal blood vessels with deep neural networks[J]. IEEE transactions on medical imaging, 2016, 35(11): 2369–2380.
[21] YAN Zengqiang, YANG Xin, CHENG K T. A three-stage deep learning model for accurate retinal vessel segmentation[J]. IEEE journal of biomedical and health informatics, 2019, 23(4): 1427–1436.
[22] 吴晨玥, 易本顺, 章云港, 等. 基于改进卷积神经网络的视网膜血管图像分割[J]. 光学学报, 2018, 38(11): 133–139
WU Chenyue, YI Benshun, ZHANG Yungang, et al. Retinal vessel image segmentation based on improved convolutional neural network[J]. Acta optica sinica, 2018, 38(11): 133–139
[23] YANG Tiejun, WU Tingting, LI Lei, et al. SUD-GAN: deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation[J]. Journal of digital imaging, 2020, 33(4): 946–957.
[24] MOU Lei, CHEN Li, CHENG Jun, et al. Dense dilated network with probability regularized walk for vessel detection[J]. IEEE transactions on medical imaging, 2020, 39(5): 1392–1403.
[25] 张赛, 李艳萍. 基于改进HED网络的视网膜血管图像分割[J]. 光学学报, 2020, 40(6): 76–85
ZHANG Sai, LI Yanping. Retinal vascular image segmentation based on improved HED network[J]. Acta optica sinica, 2020, 40(6): 76–85
[26] 罗文劼, 韩国庆, 田学东. 多尺度注意力解析网络的视网膜血管分割方法[J]. 激光与光电子学进展, 2021, 58(20): 439–452
LUO Wenjie, HAN Guoqing, TIAN Xuedong. Retinal vessel segmentation method based on multi-scale attention analytic network[J]. Laser & optoelectronics progress, 2021, 58(20): 439–452
[27] ATLI ?, GEDIK O S. Sine-Net: a fully convolutional deep learning architecture for retinal blood vessel segmentation[J]. Engineering science and technology, an international journal, 2021, 24(2): 271–283.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems