[1]ZHU Shaokai,MENG Qinghao,JIN Sheng,et al.Indoor visual local path planning based on deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2022,17(5):908-918.[doi:10.11992/tis.202107059]
Copy

Indoor visual local path planning based on deep reinforcement learning

References:
[1] PANDEY A. Mobile robot navigation and obstacle avoidance techniques: a review[J]. International robotics & automation journal, 2017, 2(3): 96–105.
[2] YASUDA Y D V, MARTINS L E G, CAPPABIANCO F A M. Autonomous visual navigation for mobile robots: a systematic literature review[J]. ACM computing surveys, 2021, 53(1): 13.
[3] FANG Baofu, MEI Gaofei, YUAN Xiaohui, et al. Visual SLAM for robot navigation in healthcare facility[J]. Pattern recognition, 2021, 113: 107822.
[4] YANG Shaowu, SCHERER S A, YI Xiaodong, et al. Multi-camera visual SLAM for autonomous navigation of micro aerial vehicles[J]. Robotics and autonomous systems, 2017, 93: 116–134.
[5] 张瑜, 宋荆洲, 张琪祁. 基于改进动态窗口法的户外清扫机器人局部路径规划[J]. 机器人, 2020, 42(5): 617–625
ZHANG Yu, SONG Jingzhou, ZHANG Qiqi. Local path planning of outdoor cleaning robot based on an improved DWA[J]. Robot, 2020, 42(5): 617–625
[6] 王殿君. 基于改进A*算法的室内移动机器人路径规划[J]. 清华大学学报(自然科学版), 2012, 52(8): 1085–1089
WANG Dianjun. Indoor mobile-robot path planning based on an improved A* algorithm[J]. Journal of tsinghua university (science and technology edition), 2012, 52(8): 1085–1089
[7] 张飞, 白伟, 乔耀华, 等. 基于改进D*算法的无人机室内路径规划[J]. 智能系统学报, 2019, 14(4): 662–669
ZHANG Fei, BAI Wei, QIAO Yaohua, et al. UAV indoor path planning based on improved D* algorithm[J]. CAAI transactions on intelligent systems, 2019, 14(4): 662–669
[8] FOX D, BURGARD W, THRUN S. The dynamic window approach to collision avoidance[J]. IEEE robotics & automation magazine, 1997, 4(1): 23–33.
[9] ROESMANN C, FEITEN W, WOESCH T, et al. Trajectory modification considering dynamic constraints of autonomous robots[C]//ROBOTIK 2012; 7th German Conference on Robotics. Munich, VDE, 2012: 1?6.
[10] R?smann C. Time-optimal nonlinear model predictive control[D]. Dissertation, Technische Universit?t Dortmund, 2019.
[11] CHEN Chunlin, LI Hanxiong, DONG Daoyi. Hybrid control for robot navigation-A hierarchical Q-learning algorithm[J]. IEEE robotics & automation magazine, 2008, 15(2): 37–47.
[12] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double q-learning[C] // Proceedings of the AAAI Conference on Artificial Intelligence, Arizona, USA 2016: 2094?2100.
[13] 张福海, 李宁, 袁儒鹏, 等. 基于强化学习的机器人路径规划算法[J]. 华中科技大学学报(自然科学版), 2018, 46(12): 65–70
ZHANG Fuhai, LI Ning, YUAN Rupeng, et al. Robot path planning algorithm based on reinforcement learning[J]. Journal of Huazhong university of science and technology (natural science edition), 2018, 46(12): 65–70
[14] GULDENRING R, G?RNER M, HENDRICH N, et al. Learning local planners for human-aware navigation in indoor environments[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, IEEE, 2021: 6053?6060.
[15] BALAKRISHNAN K, CHAKRAVARTY P, SHRIVASTAVA S. An A* curriculum approach to reinforcement learning for RGBD indoor robot navigation[EB/OL]. (2021?01?01)[2021?12?12]. https://arxiv. org/abs/2101.01774.
[16] CHAPLOT D S, GANDHI D, GUPTA S, et al. Learning to explore using active neural slam[C]// 2020 International Conference on Learning Representations (ICLR), Addis Ababa, 2020.
[17] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. (2017?08?28)[2020?12?12]. https://arxiv.org/abs/1707.06347.
[18] SAVVA M, KADIAN A, MAKSYMETS O, et al. Habitat: a platform for embodied AI research[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, IEEE, 2019: 9338?9346.
[19] 林志林, 张国良, 王蜂, 等. 一种基于VSLAM的室内导航地图制备方法[J]. 电光与控制, 2018, 25(1): 98–103
LIN Zhilin, ZHANG Guoliang, WANG Feng, et al. A method for indoor navigation mapping based on VSLAM[J]. Electronics optics & control, 2018, 25(1): 98–103
[20] 马跃龙, 曹雪峰, 万刚, 等. 一种基于深度相机的机器人室内导航点云地图生成方法[J]. 测绘工程, 2018, 27(3): 6–10,15
MA Yuelong, CAO Xuefeng, WAN Gang, et al. A method of generating point cloud maps for indoor auto-navigation of robots based on depth camera[J]. Engineering of surveying and mapping, 2018, 27(3): 6–10,15
[21] 张毅, 陈起, 罗元. 室内环境下移动机器人三维视觉SLAM[J]. 智能系统学报, 2015, 10(4): 615–619
ZHANG Yi, CHEN Qi, LUO Yuan. Three dimensional visual SLAM for mobile robots in indoor environments[J]. CAAI transactions on intelligent systems, 2015, 10(4): 615–619
[22] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//2011 International Conference on Computer Vision. Barcelona, IEEE, 2011: 2564?2571.
[23] MUR-ARTAL R, TARDóS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE transactions on robotics, 2017, 33(5): 1255–1262.
[24] SCHULMAN J, LEVINE S, ABBEEL P, et al. Trust region policy optimization[C]//International Conference on Machine Learning(PMLR), Lille, 2015: 1889?1897.
[25] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, IEEE, 2016: 770?778.
[26] XIA Fei, ZAMIR A R, HE Zhiyang, et al. Gibson env: real-world perception for embodied agents[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, IEEE, 2018: 9068?9079.
[27] MISHKIN D, DOSOVITSKIY A, KOLTUN V. Benchmarking classic and learned navigation in complex 3d environments[EB/OL]. (2019?03?28)[2021?04?05]. https://arxiv.org/abs/1901.10915.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems