[1]CHANG Xingong,WANG Jinjue.Network representation learning using graph convolution ensemble[J].CAAI Transactions on Intelligent Systems,2022,17(3):547-555.[doi:10.11992/tis.202107048]
Copy

Network representation learning using graph convolution ensemble

References:
[1] BHAGAT S, CORMODE G, MUTHUKRISHNAN S. Node Classification in Social Networks[M]// Social Network Data Analytics. Boston, MA: Springer, 2011: 115–148.
[2] LIBEN-NOWELL D, KLEINBERG J. The link-prediction problem for social networks[J]. Journal of the American society for information science and technology, 2007, 58(7): 1019–1031.
[3] CO?KUN M, KOYUTüRK M. Node similarity based graph convolution for link prediction in biological networks[J]. Bioinformatics (Oxford, England), 2021, 37(23): 4501–4508.
[4] DER MAATEN L V, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008: 2579–2605.
[5] TANG Jian, LIU Jingzhou, ZHANG Ming, et al. Visualizing Large-Scale and High-Dimensional Data[C]//Proceedings of the 25th International Conference ompanion on World Wide Web. Canada, New York, 2016: 287–297.
[6] ZHANG Daokun, YIN Jie, ZHU Xingquan, et al. Network representation learning: a survey[J]. IEEE transactions on big data, 2020, 6(1): 3–28.
[7] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(8): 1798–1828.
[8] 尹赢, 吉立新, 黄瑞阳, 等. 网络表示学习的研究与发展[J]. 网络与信息安全学报, 2019, 5(2): 77–87
YIN Ying, JI Lixin, HUANG Ruiyang, et al. Research and development of network representation learning[J]. Chinese journal of network and information security, 2019, 5(2): 77–87
[9] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323–2326.
[10] HE Xiaofei, Niyogi P. Locality preserving projections[J]. In advances in neural information processing systems, 2004, 16: 153–160.
[11] TU Cunchao, ZHANG Weicheng, LIU Zhiyuan, et al. Max-margin DeepWalk: discriminative learning of network representation[C]//Proceedings of the 25th Inter-national Joint Conference on Artifificial Intelligence. New York: ACM, 2016: 3889–3895.
[12] CAO Shaosheng, LU Wei, XU Qiongkai. Grarep: Lear- ning graph representations with global structural informat- ion[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne, Australia, 2015: 891–900.
[13] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM, 2014: 701–710.
[14] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[EB/OL]. (2016–07–03)[ 2021–07–23]https://arxiv.org/abs/1607.00653.
[15] TANG Jian, QU Meng, WANG Mingzhe, et al. LINE: large-scale information network embedding[C]//Procee- dings of the 24th International Conference on World Wide Web. New York: ACM, 2015: 1067–1077.
[16] WANG Daixin, CUI Peng, ZHU Wenwu. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2016: 1225–1234.
[17] HAMILTON W, YING Z, LESKOVEC J. Inductive repres- entation learning on large graphs[C]//Advances in Neural Information Processing Systems. Long Beach , USA, 2017: 1024–1034.
[18] WANG Hongwei, WANG Jia , WANG Jialin, et al. Graph- GAN: graph representation learning with generative adve- rsarial nets[C]// Proceedings of the 32th AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 2508–2515.
[19] ZHANG Boyu, IANG Ji, WANG Xin. Network representation learning with ensemble methods[J]. Neur- ocomputing, 2020, 380: 141–149.
[20] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755–780
XU Bingbing, CEN Keting, HUANG Junjie, et al. A survey on graph convolutional neural network[J]. Chinese journal of computers, 2020, 43(5): 755–780
[21] KIPF T N, WELLING M . Semi-supervised classifificati- on with graph convolutional networks[EB/OL]. (2016–09–09)[ 2021–07–23]https://arxiv.org/abs/1609.02907.
[22] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[23] MIKOLOV T, SUTSKEVER I, CHEN KAI, et al. Distributed representations of words and phrases and their compositionality[EB/OL]. (2013–19–16)[ 2021–07–23]https://arxiv.org/abs/1310.4546v1.
[24] SUN ZHIQING, DENG ZHI-HONG, NIE JIAN-YUN, et al. RotatE: knowledge graph embedding by relational rotation in complex space[EB/OL]. (2019–02–26)[ 2021–07-23]https://arxiv.org/abs/1902.10197v1.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems