[1]MA Tiantian,YANG Changchun,YAN Xinjie,et al.Research on the fusion of knowledge graph and lightweight graph convolutional network recommendation system[J].CAAI Transactions on Intelligent Systems,2022,17(4):721-727.[doi:10.11992/tis.202107016]
Copy

Research on the fusion of knowledge graph and lightweight graph convolutional network recommendation system

References:
[1] COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. Boston Massachusetts USA. New York: ACM, 2016: 191?198.
[2] YING R, HE RUINING, CHEN KAIFENG, et al. Graph convolutional neural networks for web-scale recommender systems[EB/OL]. New York: arXiv, 2018. (2018?06?06)[2021?07?08].https://arxiv.org/abs/1806.01973.
[3] HE Xiangnan, HE Zhankui, SONG Jingkuan, et al. NAIS: neural attentive item similarity model for recommendation[J]. IEEE transactions on knowledge and data engineering, 2018, 30(12): 2354–2366.
[4] YUAN Fajie, HE Xiangnan, ALEXANDROS Karatzoglou, et al. Parameter-efficient transfer from sequential behaviors for user modeling and recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1469?1478.
[5] He Xiangnan, LIAO Lizi, ZHAGN Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 173?182.
[6] 徐海文, 谭台哲. 基于知识图谱的个性化推荐系统构建[J]. 数字技术与应用, 2022, 40(3): 152?154,164.
[7] 汪滢. 基于区块链技术的旅游产品个性化推荐系统[J]. 数字通信世界, 2022(3): 41–43.
WANG Ying. Personalized recommendation system of tourism products based on blockchain technology[J]. Digital communication world, 2022(3): 41–43.
[8] 王越群. 基于知识图谱的深度推荐系统研究[D]. 长春: 吉林大学, 2022.
WANG Yuequn. Research on deep recommendation system based on knowledge graph[D]. Changchun: Jilin university, 2022.
[9] RENDLE S, GANTNER Z, FREUDENTHALER C, et al. Fast context-aware recommendations with factorization machines[C]//Proceedings of the 34th international ACM SIGIR conference on Research and development in Information—SIGIR’11. New York: ACM Press, 2011: 635?644.
[10] CHENG Heng-Tze, LEVENT Koc, JEREMIAH Harmsen, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st workshop on deep learning for recommender systems. New York: ACM, 201: 7?10.
[11] HE XIANGNAN, CHUA T S. Neural factorization machines for sparse predictive analytics[EB/OL]. New York: arXiv, 2017. (2017?08?16)[2021?07?01].https://arxiv.org/abs/1708.05027.
[12] GUO HUIFENG, TANG RUIMING, YE YUNMING, et al. DeepFM: a factorization-machine based neural network for CTR prediction[EB/OL]. New York: arXiv, 2017. (2017?03?13)[2021?07?01].https://arxiv.org/abs/1703.04247.
[13] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. New York: arXiv, 2016. (2016?09?09) [2021?07?01].https://arxiv.org/abs/1609.02907.
[14] WANG Xiang, HE Xiangnan, WANG Meng, et al. Neural graph collaborative filtering[EB/OL]. (2019?03?20)[2021?07?01].https://www.semanticscholar.org/paper/Neural-Graph-Collaborative-Filtering-Wang-He.
[15] WANG Hongwei, ZHAO Miao, XIE Xing, et al. Knowledge graph convolutional networks for recommender systems[C]//The World Wide Web Conference on - WWW’19. New York: ACM Press, 2019: 3307?3313.
[16] JI Shaoxiong, PAN Shirui, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE transactions on neural networks and learning systems, 2022, 33(2): 494–514.
[17] WANG Hongwei, ZHANG Fuzheng, ZHANG Mengdi, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2019.
[18] GUAN Saiping, JIN Xiaolong, WANG Yuanzhuo, et al. Shared embedding based neural networks for knowledge graph completion[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 247?256.
[19] WANG Hongwei, ZHANG Fuzheng, WANG Jialin, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417?426.
[20] WANG Xiang, HE Xiangnan, CAO Yixin, et al. KGAT: knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 950?958.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems