[1]YANG Weikai,WANG Yan.A design of an improved self-organizing mapping method based on a knowledge reasoning framework[J].CAAI Transactions on Intelligent Systems,2023,18(5):926-935.[doi:10.11992/tis.202107013]
Copy

A design of an improved self-organizing mapping method based on a knowledge reasoning framework

References:
[1] JIA Yanjie, CHEN Xi, YU Jieqiong, et al. Speaker recognition based on characteristic spectrograms and an improved self-organizing feature map neural network[J]. Complex & intelligent systems, 2021, 7(4): 1749-1757.
[2] QIU Dongwei, XU Hao, LUO Dean, et al. A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model[J]. PLoS one, 2020, 15(1): e0227901.
[3] NG R W, BEGAM K M, RAJKUMAR R K, et al. An improved self-organizing incremental neural network model for short-term time-series load prediction[J]. Applied energy, 2021, 292: 116912.
[4] 王华鲜, 华容, 刘华平, 等. 无人机群多目标协同主动感知的自组织映射方法[J]. 智能系统学报, 2020, 15(3): 609-614
WANG Huaxian, HUA Rong, LIU Huaping, et al. Self-organizing feature map method for multi-target active perception of unmanned aerial vehicle systems[J]. CAAI transactions on intelligent systems, 2020, 15(3): 609-614
[5] 李昌华, 董鑫, 李智杰. 改进的半监督协同SOM图匹配算法[J]. 计算机工程与设计, 2019, 40(5): 1355-1359
LI Changhua, DONG Xin, LI Zhijie. Improved semi-supervised collaborative SOM graph matching algorithm[J]. Computer engineering and design, 2019, 40(5): 1355-1359
[6] UNDERWOOD K L, RIZZO D M, DEWOOLKAR M M, et al. Analysis of reach-scale sediment process domains in glacially-conditioned catchments using self-organizing maps[J]. Geomorphology, 2021, 382: 107684.
[7] SPASSIANI A C, MASON M S. Application of self-organizing maps to classify the meteorological origin of wind gusts in Australia[J]. Journal of wind engineering and industrial aerodynamics, 2021, 210: 104529.
[8] CHEN Yang, ASHIZAWA N, YEO C K, et al. Multi-scale self-organizing map assisted deep autoencoding Gaussian mixture model for unsupervised intrusion detection[J]. Knowledge-based systems, 2021, 224: 107086.
[9] JAYARATNE M, ALAHAKOON D, DE SILVA D. Unsupervised skill transfer learning for autonomous robots using distributed growing self organizing maps[J]. Robotics and autonomous systems, 2021, 144: 103835.
[10] DONG Bin, WENG Guirong, JIN Ri. Active contour model driven by self organizing maps for image segmentation[J]. Expert systems with applications, 2021, 177: 114948.
[11] 翟永杰, 杨旭, 赵振兵, 等. 融合共现推理的Faster R-CNN输电线路金具检测[J]. 智能系统学报, 2021, 16(2): 237-246
ZHAI Yongjie, YANG Xu, ZHAO Zhenbing, et al. Integrating co-occurrence reasoning for faster R-CNN transmission line fitting detection[J]. CAAI transactions on intelligent systems, 2021, 16(2): 237-246
[12] 饶子昀, 张毅, 刘俊涛, 等. 应用知识图谱的推荐方法与系统[J]. 自动化学报, 2021, 47(9): 2061-2077
RAO Ziyun, ZHANG Yi, LIU Juntao, et al. Recommendation methods and systems using knowledge graph[J]. Acta automatica sinica, 2021, 47(9): 2061-2077
[13] LIU Chenguang, YU Yongli, LI Xingxin, et al. Application of entity relation extraction method under CRF and syntax analysis tree in the construction of military equipment knowledge graph[J]. IEEE access, 2005, 8: 81-88.
[14] YAN Hehua, YANG Jun, WAN Jiafu. KnowIME: a system to construct a knowledge graph for intelligent manufacturing equipment[J]. IEEE access, 2020, 8: 41805-41813.
[15] YU Fang, ZHOU Qing, LU Xiaoshan, et al. A first-order logic framework of major choosing decision making with an uncertain reasoning function[J]. IEEE transactions on systems, man, and cybernetics:systems, 2018, 48(1): 89-98.
[16] XIONG Wenhan, HOANG T, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 564?573.
[17] WANG Xiang, WANG Dingxian, XU Canran, et al. Explainable reasoning over knowledge graphs for recommendation[EB/OL]. (2018?11?12)[2020?01?01]. https://arxiv.org/abs/1811.04540.
[18] BELLOMARINI L, BENEDETTO D, GOTTLOB G, et al. Vadalog: a modern architecture for automated reasoning with large knowledge graphs[J]. Information systems, 2022, 105: 101528.
[19] ZHANG Rui, HRISTOVSKI D, SCHUTTE D, et al. Drug repurposing for COVID-19 via knowledge graph completion[J]. Journal of biomedical informatics, 2021, 115: 103696.
[20] WANG Qi, JI Yuede, HAO Yongsheng, et al. GRL: Knowledge graph completion with GAN-based reinforcement learning[J]. Knowledge-based systems, 2020, 209: 106421.
[21] 刘烨宸, 李华昱. 领域知识图谱研究综述[J]. 计算机系统应用, 2020, 29(6): 1-12
LIU Yechen, LI Huayu. Survey on domain knowledge graph research[J]. Computer systems & applications, 2020, 29(6): 1-12
[22] 杜会芳, 王昊奋, 史英慧, 等. 知识图谱多跳问答推理研究进展、挑战与展望[J]. 大数据, 2021, 7(3): 60-79
DU Huifang, WANG Haofen, SHI Yinghui, et al. Progress, challenges and research trends of reasoning in multi-hop knowledge graph based question answering[J]. Big data research, 2021, 7(3): 60-79
[23] MELIN P, MONICA J C, SANCHEZ D, et al. Analysis of spatial spread relationships of coronavirus (COVID-19) pandemic in the world using self organizing maps[J]. Chaos, solitons & fractals, 2020, 138: 109917.
[24] 王文广. 知识图谱推理: 现代的方法与应用[J]. 大数据, 2021, 7(3): 42-59
WANG Wenguang. Knowledge graph reasoning: modern methods and applications[J]. Big data research, 2021, 7(3): 42-59
[25] SHEN Fei, LANGARI R, YAN Ruqiang. Transfer between multiple machine plants: a modified fast self-organizing feature map and two-order selective ensemble based fault diagnosis strategy[J]. Measurement, 2020, 151: 107155.
[26] 许曈, 凌有铸, 陈孟元. 一种融合DGSOM神经网络的仿生算法研究[J]. 智能系统学报, 2017, 12(3): 405-412
XU Tong, LING Youzhu, CHEN Mengyuan. A bio-inspired algorithm integrated with DGSOM neural network[J]. CAAI transactions on intelligent systems, 2017, 12(3): 405-412
[27] XU Bo, ZHOU Feng, GATES A M. Multi-objective particle swarm optimization algorithm for the minimum constraint removal problem[J]. International journal of computational intelligence systems, 2020, 13(1): 291-299.
[28] 曹知奥, 汪晋宽, 韩英华, 等. 基于交叉-变异人工蜂群算法的微网优化调度[J]. 控制与决策, 2020, 35(9): 2059-2069
CAO Zhiao, WANG Jinkuan, HAN Yinghua, et al. Crossover-mutation based artificial bee colony algorithm for optimal scheduling of microgrid[J]. Control and decision, 2020, 35(9): 2059-2069
[29] AFOUDI Y, LAZAAR M, AL ACHHAB M. Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network[J]. Simulation modelling practice and theory, 2021, 113: 102375.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems