[1]YU Runyu,DU Junping,XUE Zhe,et al.Research on named entity recognition for scientific and technological conferences[J].CAAI Transactions on Intelligent Systems,2022,17(1):50-58.[doi:10.11992/tis.202107010]
Copy

Research on named entity recognition for scientific and technological conferences

References:
[1] 苏晓娟, 张英杰, 白晨, 等. 科技大数据背景下的中英双语语料库的构建及其特点研究[J]. 中国科技资源导刊, 2019, 51(6): 87–92
SU Xiaojuan, ZHANG Yingjie, BAI Chen, et al. Research of bilingual corpus construction and its characteristics in big data[J]. China science & technology resources review, 2019, 51(6): 87–92
[2] 胡吉颖, 谢靖, 钱力, 等. 基于知识图谱的科技大数据知识发现平台建设[J]. 数据分析与知识发现, 2019, 3(1): 55–62
HU Jiying, XIE Jing, QIAN Li, et al. Constructing big data platform for sci-tech knowledge discovery with knowledge graph[J]. Data analysis and knowledge discovery, 2019, 3(1): 55–62
[3] 何玉洁, 杜方, 史英杰, 等. 基于深度学习的命名实体识别研究综述[J]. 计算机工程与应用, 2021, 57(11): 21?36.
HE Yujie, DU Fang, SHI Yingjie, et al. Survey of named entity recognition based on deep learning[J]. Computer engineering and applications, 2021, 57(11): 21?36.
[4] 焦凯楠, 李欣, 朱容辰. 中文领域命名实体识别综述[J]. 计算机工程与应用, 2021, 57(16): 1–15
JIAO Kainan, LI Xin, ZHU Rongchen. Overview of Chinese domain named entity recognition[J]. Computer engineering and applications, 2021, 57(16): 1–15
[5] 周园春, 王卫军, 乔子越, 等. 科技大数据知识图谱构建方法及应用研究综述[J]. 中国科学:信息科学, 2020, 50(7): 957–987
ZHOU Yuanchun, WANG Weijun, QIAO Ziyue, et al. A survey on the construction methods and applications of sci-tech big data knowledge graph[J]. Scientia sinica (informationis), 2020, 50(7): 957–987
[6] LIU Wei, XU Tongge, XU Qinghua, et al. An encoding strategy based word-character LSTM for Chinese NER[C]// 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL, 2019: 2379?2389.
[7] 张江英, 郝矿荣, 王直杰, 等. 基于lattice LSTM-CRF模型的中文紧急事件抽取[C]//2020中国自动化大会论文集. 上海: [s. n. ], 2020: 770?775.
[8] 李嘉欣, 王平. 中文命名实体识别研究方法综述[J]. 计算机时代, 2021(4): 18–21
LI Jiaxin, WANG Ping. A review of research methods of Chinese named entity recognition[J]. Computer era, 2021(4): 18–21
[9] PATIL N V, PATIL A S, PAWAR B V. HMM based Named Entity Recognition for inflectional language[C]//2017 International Conference on Computer, Communications and Electronics. New York, USA: IEEE, 2017: 565?572.
[10] YAO Lin, LIU Hong, LIU Yi, et al. Biomedical named entity recognition based on deep neutral network[J]. International journal of hybrid information technology, 2015, 8(8): 279–288.
[11] STRUBELL Emma, VERGA Patrick, BELANGER David, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark. Stroudsburg, USA: Association for Computational Linguistics, 2017: 1?13.
[12] YANG Jie, LIANG Shuailong, ZHANG Yue. Design challenges and misconceptions in neural sequence labeling[C]//Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, USA. Association for Computational Linguistics 2018: 3879?3889.
[13] KONG Jun, ZHANG Leixin, JIANG Min, et al. Incorporating multi-level CNN and attention mechanism for Chinese clinical named entity recognition[J]. Journal of biomedical informatics, 2021, 116: 103737.
[14] HUANG Zhiheng, XU Wei, YU Kai. Bidirectional LSTM-CRF models for sequence tagging[J]. Computer science, 2015: 1–10.
[15] ZHANG Yue, YANG Jie. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2018: 1554?1564.
[16] ZHANG Han, GUO Yuanbo, LI Tao. Domain named entity recognition combining GAN and BiLSTM-attention-CRF[J]. Journal of computer research and development, 2019, 56(9): 1851.
[17] WOLF T, DEBUT L, SANH V, et al. Transformers: state-of-the-art natural language processing[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Stroudsburg, USA: ACL, 2020: 38?45.
[18] NICO E, VASILEIOS B, KLAUS D. Point transformer[J]. IEEE access, 2021, 9: 134826–134840.
[19] CHIARA Bartolozzi, GIACOMO Indiveri. A selective attention multi–chip system with dynamic synapses and spiking neurons[M]//Advances in Neural Information Processing Systems 19. Cambridge: MIT Press, 2007: 113?120.
[20] JACOB Devlin, CHANG Mingwei, LEE Kenton, et al. Bert: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018-10-11) [2021-07-06].https://arxiv.org/abs/1810.04805.
[21] DAI Zhenjin, WANG Xutao, NI Pin, et al. Named entity recognition using BERT BiLSTM CRF for Chinese electronic health records[C]//2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. New York, USA: IEEE, 2019.
[22] LI Xiangyang, ZHANG Huan, ZHOU Xiaohua. Chinese clinical named entity recognition with variant neural structures based on BERT methods[J]. Journal of biomedical informatics, 2020, 107: 103422.
[23] 毛明毅, 吴晨, 钟义信, 等. 加入自注意力机制的BERT命名实体识别模型[J]. 智能系统学报, 2020, 15(4): 772–779
MAO Mingyi, WU Chen, ZHONG Yixin, et al. BERT named entity recognition model with self-attention mechanism[J]. CAAI transactions on intelligent systems, 2020, 15(4): 772–779
[24] LI Xiaonan, YAN Hang, QIU Xipeng, et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2020: 6836?6842.
[25] YOON W, SO C H, LEE J, et al. CollaboNet: collaboration of deep neural networks for biomedical named entity recognition[J]. BMC bioinformatics, 2019, 20(Suppl 10): 249.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems