[1]LI Jingcong,PAN Weijian,LIN Zhenyuan,et al.Emotional EEG signal recognition method using multi-path graph attention network[J].CAAI Transactions on Intelligent Systems,2022,17(3):531-539.[doi:10.11992/tis.202107003]
Copy

Emotional EEG signal recognition method using multi-path graph attention network

References:
[1] 张冠华, 余旻婧, 陈果, 等. 面向情绪识别的脑电特征研究综述[J]. 中国科学(信息科学), 2019, 49(9): 1097–1118
ZHANG Guanhua, YU Minjing, CHEN Guo, et al. A review of research on EEG features for emotion recognition[J]. Scientia sinica informationis, 2019, 49(9): 1097–1118
[2] ZHENG Weilong, ZHU Jiayi, PENG Yong, et al. EEG-based emotion classification using deep belief networks[C]//2014 IEEE International Conference on Multimedia and Expo (ICME). Shanghai: IEEE, 2014: 1–6.
[3] BABLANI A, EDLA D R, TRIPATHI D, et al. Survey on brain-computer interface: an emerging computational intelligence paradigm[J]. ACM computing surveys, 2019, 52(1): 1–32.
[4] WU C H, HUANG Y M, HWANG J P. Review of affective computing in education/learning: Trends and challenges[J]. British journal of educational technology, 2016, 47(6): 1304–1323.
[5] 潘家辉, 何志鹏, 李自娜, 等. 多模态情绪识别研究综述[J]. 智能系统学报, 2020, 15(4): 633–645
PAN Jiahui, HE Zhipeng, LI Zina, et al. A survey of multi-modal emotion recognition research[J]. Journal of intelligent systems, 2020, 15(4): 633–645
[6] ALARC?O S M, FONSECA M J. Emotions recognition using EEG signals: a survey[J]. IEEE transactions on affective computing, 2017, 10(3): 374–393.
[7] HE Zhipeng, LI Zina, YANG Fuzhou, et al. Advances in multimodal emotion recognition based on brain–computer interfaces[J]. Brain sciences, 2020, 10(10): 687.
[8] LI Mu, LU Baoliang. Emotion classification based on gamma-band EEG[C]//2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis: IEEE, 2009: 1223–1226.
[9] DUAN Ruonan, ZHU Jiayi, LU Baoliang. Differential entropy feature for EEG-based emotion classification[C]//2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). San Diego: IEEE, 2013: 81–84.
[10] ALHAGRY S, FAHMY A A, EL-KHORIBI R A. Emotion recognition based on EEG using LSTM recurrent neural network[J]. (IJACSA) international journal of advanced computer science and applications, 2017, 8(10): 355–358.
[11] LI He, JIN Yiming, ZHENG Weilong, et al. Cross-subject emotion recognition using deep adaptation networks[C]//25th International Conference on Neural Information Processing. Siem Reap: Springer, 2018: 403–413.
[12] LI Yang, WANG Lei, ZHENG Wenming, et al. A novel bi-hemispheric discrepancy model for EEG emotion recognition[J]. IEEE transactions on cognitive and developmental systems, 2020, 13(2): 354–367.
[13] LIU Wei, ZHENG Weilong, LU Baoliang. Emotion recognition using multimodal deep learning[C]//23rd International Conference on Neural Information Processing. Kyoto: Springer, 2016: 521–529.
[14] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755–780
XU Bingbing, CEN Keting, HUANG Junjie, et al. A survey on graph convolutional neural network[J]. Chinese journal of computers, 2020, 43(5): 755–780
[15] WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE transactions on neural networks and learning systems, 2021, 32(1): 4–24.
[16] ZHANG Tong, WANG Xuehan, XU Xiangmin, et al. GCB-Net: Graph convolutional broad network and its application in emotion recognition[J]. IEEE transactions on affective computing, 2022, 13(1): 379–388.
[17] ZHONG Peixiang, WANG Di, MIAO Chunyan. EEG-based emotion recognition using regularized graph neural networks[J]. IEEE transactions on affective computing, 2020(99): 1.
[18] SONG Tengfei, ZHENG Wenming, SONG Peng, et al. EEG emotion recognition using dynamical graph convolutional neural networks[J]. IEEE transactions on affective computing, 2020, 11(3): 532–541.
[19] WAN Sheng, PAN Shirui, YANG Jian, et al. Contrastive and generative graph convolutional networks for graph-based semi-supervised learning[EB/OL]. (2020–09–19)[ 2021–07–02].https://arxiv.org/abs/2009.07111v2.
[20] WAN Sheng, GONG Chen, ZHONG Ping, et al. Multiscale dynamic graph convolutional network for hyperspectral image classification[J]. IEEE transactions on geoscience and remote sensing, 2020, 58(5): 3162–3177.
[21] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018–02–04)[ 2021–07–02].https://arxiv.org/abs/1710.10903.
[22] KINGMA D, BA J. Adam: a method for stochastic optimization[EB/OL]. (2017–01–30)[ 2021–07–02].https://arxiv.org/abs/1412.6980.
[23] COLLOBERT R, SINZ F, WESTON J, et al. Large scale transductive SVMs[J]. The journal of machine learning research, 2006, 7(8): 1687–1712.
[24] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017–02–22)[ 2021–07–02].https://arxiv.org/abs/1609.02907.
[25] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE transactions on neural networks, 2011, 22(2): 199–210.
[26] ZHENG Weilong, LU Baoliang. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE transactions on autonomous mental development, 2015, 7(3): 162–175.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems