[1]OUYANG Yongping,WEI Changyun,CAI Boliang.Collision avoidance approach for distributed heterogeneous multirobot systems in dynamic environments[J].CAAI Transactions on Intelligent Systems,2022,17(4):752-763.[doi:10.11992/tis.202106044]
Copy

Collision avoidance approach for distributed heterogeneous multirobot systems in dynamic environments

References:
[1] SHI Huiyuan, SU Chengli, CAO Jiangtao, et al. Nonlinear adaptive predictive functional control based on the Takagi-sugeno model for average cracking outlet temperature of the ethylene cracking furnace[J]. Industrial & engineering chemistry research, 2015, 54(6): 1849–1860.
[2] MELLINGER D, KUSHLEYEV A, KUMAR V. Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams[C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul: IEEE, 2012: 477?483.
[3] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[M]//Autonomous robot vehicles. New York: Springer New York, 1986: 396?404.
[4] ZHANG Pengpeng, WEI Changyun, CAI Boliang, et al. Mapless navigation for autonomous robots: a deep reinforcement learning approach[C]//2019 Chinese Automation Congress. Hangzhou: IEEE, 2019: 3141?3146.
[5] CHEN Yufan, LIU Miao, EVERETT M, et al. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning[C]//2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 285?292.
[6] TAI Lei, PAOLO G, LIU Ming. Virtual-to-real deep reinforcement learning: continuous control of mobile robots for mapless navigation[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE, 2017: 31?36.
[7] MINSKY M. Theory of neural-analog reinforcement systems and its application to the brain-model problem[M]. New Jersey: Princeton University, 1954.
[8] BELLMAN R. Dynamic programming[J]. Science, 1966, 153(3731): 34–37.
[9] FAN Tingxiang, LONG Pinxin, LIU Wenxi, et al. Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios[J]. The international journal of robotics research, 2020, 39(7): 856–892.
[10] BARTH-MARON G, HOFFMAN M W, BUDDEN D, et al. Distributed distributional deterministic policy gradients[EB/OL]. New York: arXiv, 2018: (2018?04?23)[2021?06?25].https://arxiv.org/abs/1804.08617.
[11] NA S, NIU Hanlin, LENNOX B, et al. Universal artificial pheromone framework with deep reinforcement learning for robotic systems[C]//2021 6th International Conference on Control and Robotics Engineering. Beijing: IEEE, 2021: 28?32.
[12] HUANG Liang, BI Suzhi, ZHANG Y J A. Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks[J]. IEEE transactions on mobile computing, 2020, 19(11): 2581–2593.
[13] SCHULMAN J, LEVINE S, ABBEEL P, et al. Trust region policy optimization[C]//Proceedings of the 32nd International conference on machine learning. New York: PMLR, 2015: 1889?1897.
[14] WANG Yuhui, HE Hao, TAN Xiaoyang. Truly proximal policy optimization[C]// Proceedings of the 35th Uncertainty in Artificial Intelligence Conference. New York: PMLR, 2020: 113?122.
[15] 赵冬斌, 邵坤, 朱圆恒, 等. 深度强化学习综述: 兼论计算机围棋的发展[J]. 控制理论与应用, 2016, 33(6): 701–717
ZHAO Dongbin, SHAO Kun, ZHU Yuanheng, et al. Review of deep reinforcement learning and discussions on the development of computer go[J]. Control theory & applications, 2016, 33(6): 701–717
[16] AGOSTINELLI F, HOCQUET G, SINGH S, et al. From reinforcement learning to deep reinforcement learning: an overview[M]//Braverman readings in machine learning. Key ideas from inception to current state. Cham: Springer, 2018: 298?328.
[17] NIELSEN M A. Neural networks and deep learning[M]. San Francisco: Determination press, 2015.
[18] HU Junyan, NIU Hanlin, CARRASCO J, et al. Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning[J]. IEEE transactions on vehicular technology, 2020, 69(12): 14413–14423.
[19] CHRISTIANOS F, SCH?FER L, ALBRECHT S V. Shared experience actor-critic for multi-agent reinforcement learning[J]. Advances in neural information processing systems, 2020, 33: 10707–10717.
[20] GAO Junli, YE Weijie, GUO Jing, et al. Deep reinforcement learning for indoor mobile robot path planning[J]. Sensors, 2020, 20(19): 5493.
[21] JAKOB Foerster, GREGORY Farquhar, TRIAN T AFYLLOS Afouras, et al. Counterfactual multi-agent policy gradients[C]//Proceedings of the AAAI conference on artificial intelligence. New Orleans: PKP, 2018, 32(1).
[22] LOWE R, WU Yi, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[EB/OL]. New York: arXiv, 2017. (2017?06?07) [2021?06?25].https://arxiv.org/abs/1706.02275.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems