[1]ZHA Siming,BAO Qingsen,LUO Jian,et al.Adaptive label correlation and instance correlation guided incomplete multiview weak label learning[J].CAAI Transactions on Intelligent Systems,2022,17(4):670-679.[doi:10.11992/tis.202106017]
Copy

Adaptive label correlation and instance correlation guided incomplete multiview weak label learning

References:
[1] ZHOU Tianyi, TAO Dacheng, WU Xindong. Compressed labeling on distilled labelsets for multi-label learning[J]. Machine learning, 2012, 88(1/2): 69–126.
[2] XU Linli, WANG Zhen, SHEN Zefan, et al. Learning low-rank label correlations for multi-label classification with missing labels[C]//2014 IEEE International Conference on Data Mining. Shenzhen: IEEE, 2014: 1067?1072.
[3] ZHU Yue, KWOK J T, ZHOU Zhihua. Multi-label learning with global and local label correlation[J]. IEEE transactions on knowledge and data engineering, 2018, 30(6): 1081–1094.
[4] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8): 1819–1837.
[5] BOUTELL M R, LUO Jiebo, SHEN Xipeng, et al. Learning multi-label scene classification[J]. Pattern recognition, 2004, 37(9): 1757–1771.
[6] FüRNKRANZ J, HüLLERMEIER E, LOZA MENCíA E, et al. Multilabel classification via calibrated label ranking[J]. Machine learning, 2008, 73(2): 133–153.
[7] TSOUMAKAS G, VLAHAVAS I. Random k-labelsets: an ensemble method for multilabel classification[M]//Machine Learning: ECML 2007. Heidelberg: Springer Berlin Heidelberg, 2007: 406?417.
[8] ZHANG Jia, LUO Zhiming, LI Candong, et al. Manifold regularized discriminative feature selection for multi-label learning[J]. Pattern recognition, 2019, 95: 136–150.
[9] ZHANG Changqing, YU Ziwei, FU Huazhu, et al. Hybrid noise-oriented multilabel learning[J]. IEEE transactions on cybernetics, 2020, 50(6): 2837–2850.
[10] SUN Yuyin, ZHANG Yin, ZHI Zhihua. Multi-label learning with weak label[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence. Georgia: AAAI Press, 2010: 593?598.
[11] LI Junbing, ZHANG Changqing, ZHU Pengfei, et al. SPL-MLL: selecting predictable landmarks for multi-label learning[C]//European Conference on Computer Vision. Cham: Springer, 2020: 783?799.
[12] ZHANG Minling, ZHOU Zhihua. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7): 2038–2048.
[13] CLARE A, KING R D. Knowledge discovery in multi-label phenotype data[M]//Principles of Data Mining and Knowledge Discovery. Heidelberg: Springer Berlin Heidelberg, 2001: 42?53.
[14] GHAMRAWI N, MCCALLUM A. Collective multi-label classification[C]//CIKM ’05: Proceedings of the 14th ACM international conference on Information and knowledge management. New York: ACM, 2005: 195?200.
[15] ZHANG Changqing, YU Ziwei, HU Qinghua, et al. Latent semantic aware multi-view multi-label Classification[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Louisiana: AAAI Press, 2018: 2703?2709.
[16] LIU Meng, LUO Yong, TAO Dacheng, et al. Low-rank multi-view learning in matrix completion for multi-label image classification[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Texas: AAAI Press, 2015: 2278?2284.
[17] ZHANG Yongshan, WU Jia, CAI Zhihua, et al. Multi-view multi-label learning with sparse feature selection for image annotation[J]. IEEE transactions on multimedia, 2020, 22(11): 2844–2857.
[18] TAN Qiaoyu, YU Guoxian, DOMENICONI C, et al. Incomplete multi-view weak-label learning[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden. California: International Joint Conferences on Artificial Intelligence Organization, 2018: 2703?2709.
[19] ZHANG Changqing, CUI Yajie, HAN Zongbo, et al. Deep partial multi-view learning[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(5): 2402–2415.
[20] 张祎, 孔祥维, 王振帆, 等. 基于多视图矩阵分解的聚类分析[J]. 自动化学报, 2018, 44(12): 2160–2169
ZHANG Yi, KONG Xiangwei, WANG Zhenfan, et al. Matrix factorization for multi-view clustering[J]. Acta automatica sinica, 2018, 44(12): 2160–2169
[21] 孙亮, 韩毓璇, 康文婧, 等. 基于生成对抗网络的多视图学习与重构算法[J]. 自动化学报, 2018, 44(5): 819–828
SUN Liang, HAN Yuxuan, KANG Wenjing, et al. Multi-view learning and reconstruction algorithm via generative adversarial networks[J]. Acta automatica sinica, 2018, 44(5): 819–828
[22] XU Chang, TAO Dacheng, XU Chao. Multi-view learning with incomplete views[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2015, 24(12): 5812–5825.
[23] DATTA R, JOSHI D, LI Jia, et al. Image retrieval: ideas, influences, and trends of the new age[J]. ACM computing surveys, 2008, 40(2): 5.
[24] DONG Haochen, LI Yufeng, ZHOU Zhihua. Learning from semi-supervised weak-label data[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Stockholm: International Joint Conferences on Artificial Intelligence Organization, 2018, 32(1).
[25] LUO Dijun, DING C, HUANG Heng, et al. Non-negative Laplacian embedding[C]//2009 Ninth IEEE International Conference on Data Mining. Miami Beach: IEEE, 2009: 337?346.
[26] WANG Hua, HUANG Heng, DING C. Image annotation using multi-label correlated Green’s function[C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 2029?2034.
[27] CHUNG F R K, GRAHAM F C. Spectral graph theory [M]//Rhode Island: American Mathematic Society, 1997.
[28] 杨明, 刘先忠. 矩阵论[M]. 武汉: 华中工学院出版社, 2003.
[29] BOUMAL N, MISHRA B, ABSIL P A, et al. Manopt, a Matlab toolbox for optimization on manifolds[J]. Journal of machine learning research, 2014, 15: 1455–1459.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems