[1]WANG Ding,MEN Changqian,WANG Wenjian.A kernel contextual bandit recommendation algorithm[J].CAAI Transactions on Intelligent Systems,2022,17(3):625-633.[doi:10.11992/tis.202105039]
Copy

A kernel contextual bandit recommendation algorithm

References:
[1] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE transactions on knowledge and data engineering, 2005, 17(6): 734–749.
[2] SCHAFER J B, FRANKOWSKI D, HERLOCKER J, et al. Collaborative filtering recommender systems[M]//BRUSILOVSKY P, KOBSA A, NEJDL W. The Adaptive Web. Berlin, Germany: Springer, 2007: 291–324.
[3] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York: ACM, 2001: 285–295.
[4] BASU C, HIRSH H, COHEN W. Recommendation as classification: using social and content-based information in recommendation[C]//Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence. Madison: WI, 1998: 714–720.
[5] PAZZANI M J, BILLSUS D. Content-based recommendation systems[M]//BRUSILOVSKY P, KOBSA A, NEJDL W. The Adaptive Web. Berlin, Germany: Springer, 2007: 325–341.
[6] AGARWAL D, CHEN B C, ELANGO P. Explore/exploit schemes for web content optimization[C]//Proceedings of the Ninth IEEE International Conference on Data Mining. Miami Beach: TEEE, 2009: 1–10.
[7] SLIVKINS A. Introduction to multi-armed bandits[J]. Foundations and trends? in machine learning, 2019, 12(1/2): 1–286.
[8] ABBASI-YADKORI Y, PáL D, SZEPESVáRI C. Improved algorithms for linear stochastic bandits[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems. Granada, Spain, 2011: 2312–2320.
[9] BUBECK S, CESA-BIANCHI N. Regret analysis of stochastic and nonstochastic multi-armed bandit problems[J]. Foundations and trends? in machine learning, 2012, 5(1): 1–122.
[10] CHU Wei, LI Lihong, REYZIN L, et al. Contextual bandits with linear payoff functions[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, USA, 2011: 208–214.
[11] BOUNEFFOUF D, BOUZEGHOUB A, GAN?ARSKI A L. A contextual-bandit algorithm for mobile context-aware recommender system[C]//Proceedings of the 19th International Conference on Neural Information Processing. Berlin: Springer, 2012: 324–331.
[12] LANGFORD J, ZHANG Tong. The Epoch-Greedy algorithm for contextual multi-armed bandits[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems. Vancouver British, Columbia, Canada, 2007: 817–824.
[13] AUER P, CESA-BIANCHI N, FISCHER P. Finite-time analysis of the multiarmed bandit problem[J]. Machine learning, 2002, 47(2): 235–256.
[14] THOMPSON W R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[J]. Biometrika, 1933, 25(3/4): 285–294.
[15] LI Lihong, CHU Wei, LANGFORD J, et al. A contextual-bandit approach to personalized news article recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 661–670.
[16] AGRAWAL S, GOYAL N. Thompson sampling for contextual bandits with linear payoffs[C]//Proceedings of the 30th International Conference on International Conference on Machine Learning. New York: ACM, 2013: III-1220-III-1228.
[17] CESA-BIANCHI N, GENTILE C, ZAPPELLA G. A gang of bandits[C]//Proceedings of the 26th Intermational Conference on Neural Information Processing Systems. New York: ACM, 2013: 737–745.
[18] GENTILE C, LI Shuai, ZAPPELLA G. Online clustering of bandits[C]//Proceedings of the 31th International Conference on Machine Learning. Beijing, China, 2014: 757–765.
[19] LI Shuai, KARATZOGLOU A, GENTILE C. Collaborative filtering bandits[C]//Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. Pisa, Italy, 2016: 539–548.
[20] WANG Huazheng, WU Qingyun, WANG Hongning. Factorization bandits for interactive recommendation[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, United States, 2017: 2695–2702.
[21] SCH?LKOPF B, SMOLA A J. Learning with kernels: support vector machines, regularization, optimization, and beyond[M]. Cambridge, Mass: MIT Press, 2002.
[22] WALSH T J, SZITA I, DIUK C, et al. Exploring compact reinforcement-learning representations with linear regression[C]//Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. Montreal, Quebec, Canada, 2009: 591–598.
[23] 张国亮, 沈慧, 石峰, 等. 大型实对称矩阵分块迭代求逆算法[J]. 无线互联科技, 2015(6): 127–129
ZHANG Guoliang, SHEN Hui, SHI Feng, et al. Block iterative inverse algorithm for a iarge-scale real matrix[J]. Wireless internet technology, 2015(6): 127–129
[24] Yahoo! Webscope Program. Yahoo! front page today module user click log dataset, version 1.0[EB/OL]. (2020–12–22)[2021–05–26] http://webscope.sandbox.yahoo.com.
[25] LI Lihong, CHU Wei, LANGFORD J, et al. Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms[C]//Proceedings of the fourth ACM International Conference on Web Search and Data Mining. Hong Kong, China, 2011: 297–306.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems