[1]LIU Wei,GUO Zhiqing,LIU Guangwei,et al.Improved atom search optimization by combining amplitude random compensation and step size evolution mechanism[J].CAAI Transactions on Intelligent Systems,2022,17(3):602-616.[doi:10.11992/tis.202103033]
Copy

Improved atom search optimization by combining amplitude random compensation and step size evolution mechanism

References:
[1] 董如意. 元启发式优化算法研究与应用[D]. 长春: 吉林大学, 2019: 1–3.
DONG Ruyi. Research and application of meta-heuristic optimization algorithms[D]. Changchun: Jilin University, 2019: 1–3.
[2] HOLLAND J H. Genetic algorithms[J]. Scientific American, 1992, 267(1): 66–72.
[3] EIBEN A E, B?CK T. Empirical investigation of multiparent recombination operators in evolution strategies[J]. Evolutionary computation, 1997, 5(3): 347–365.
[4] MOSCATO P. On evolution, search, optimization, genetic algorithms and martial arts-towards memetic algorithms [J]. Caltech Concurrent Computation Program, 1989.
[5] KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of ICNN’95-International Conference on Neural Networks. IEEE, 1995: 1942–1948.
[6] ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm[J]. Computers and structures, 2016, 169: 1–12.
[7] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in engineering software, 2017, 114: 163–191.
[8] ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft computing, 2019, 23(3): 715–734.
[9] MIRJALILI S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm[J]. Knowledge-based systems, 2015, 89: 228–249.
[10] KIRKPATRICK S, GELATT C D Jr, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671–680.
[11] GON?ALVES M S, LOPEZ R H, MIGUEL L F F. Search group algorithm: a new metaheuristic method for the optimization of truss structures[J]. Computers and structures, 2015, 153: 165–184.
[12] MIRJALILI S, MIRJALILI S M, HATAMLOU A. Multi-verse optimizer: a nature-inspired algorithm for global optimization[J]. Neural computing and applications, 2016, 27(2): 495–513.
[13] ZHAO Weiguo, WANG Liying, ZHANG Zhenxing. A novel atom search optimization for dispersion coefficient estimation in groundwater[J]. Future generation computer systems, 2019, 91: 601–610.
[14] ZHAO Weiguo, WANG Liying, ZHANG Zhenxing. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem[J]. Knowledge-based systems, 2019, 163: 283–304.
[15] ELAZIZ M A, NABIL N, EWEES A A, et al. Automatic data clustering based on hybrid atom search optimization and sine-cosine algorithm[C]//2019 IEEE Congress on Evolutionary Computation. Wellington: IEEE, 2019: 2315–2322.
[16] AGWA A M, EL-FERGANY A A, SARHAN G M. Steady-state modeling of fuel cells based on atom search optimizer[J]. Energies, 2019, 12(10): 1884.
[17] 柳缔西子, 范勤勤, 胡志华. 基于混沌搜索和权重学习的教与学优化算法及其应用[J]. 智能系统学报, 2018, 13(5): 818–828
LIU D, FAN Qinqin, HU Zhihua. Teaching-learning-based optimization algorithm based on chaotic search and weighted learning and its application[J]. CAAI transactions on intelligent systems, 2018, 13(5): 818–828
[18] 贾鹤鸣, 彭晓旭, 邢致恺, 等. 改进萤火虫优化算法的Renyi熵污油图像分割[J]. 智能系统学报, 2020, 15(2): 367–373
JIA Heming, PENG Xiaoxu, XING Zhikai, et al. Renyi entropy based on improved firefly optimization algorithm for image segmentation of waste oil[J]. CAAI transactions on intelligent systems, 2020, 15(2): 367–373
[19] 赵欣. 不同一维混沌映射的优化性能比较研究[J]. 计算机应用研究, 2012, 29(3): 913–915
ZHAO Xin. Research on optimization performance comparison of different one-dimensional chaotic maps[J]. Application research of computers, 2012, 29(3): 913–915
[20] DERRAC J, GARCíA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and evolutionary computation, 2011, 1(1): 3–18.
[21] NABIL E. A modified flower pollination algorithm for global optimization[J]. Expert systems with applications, 2016, 57: 192–203.
[22] 刘威, 付杰, 周定宁, 等. 基于改进郊狼优化算法的浅层神经进化方法研究[J]. 计算机学报, 2021, 44(6): 1200–1213
LIU Wei, FU Jie, ZHOU Dingning, et al. Research on shallow neural network evolution method based on improved coyote optimization algorithm[J]. Chinese journal of computers, 2021, 44(6): 1200–1213
[23] 马创, 周代棋, 张业. 基于改进鲸鱼算法的BP神经网络水资源需求预测方法[J]. 计算机科学, 2020, 47(S2): 486–490
MA Chuang, ZHOU Daiqi, ZHANG Ye. BP neural network water resource demand prediction method based on improved whale algorithm[J]. Computer science, 2020, 47(S2): 486–490
[24] 马创涛, 邵景峰. 烟花算法改进BP神经网络预测模型及其应用[J]. 控制工程, 2020, 27(8): 1324–1331
MA Chuangtao, SHAO Jingfeng. Prediction model based on improved BP neural network with fireworks algorithm and its application[J]. Control engineering of China, 2020, 27(8): 1324–1331
[25] 王振东, 刘尧迪, 胡中栋, 等. 利用改进灰狼算法优化BP神经网络的入侵检测[J]. 小型微型计算机系统, 2021, 42(4): 875–884
WANG Zhendong, LIU Yaodi, HU Zhongdong, et al. Use improved grey wolf algorithm to optimize BP neural network intrusion detection[J]. Journal of Chinese computer systems, 2021, 42(4): 875–884
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems