[1]YU Qinru,LU Guifu,LI Hua.Nonnegative low-rank matrix factorization with adaptive graph neighbors[J].CAAI Transactions on Intelligent Systems,2022,17(2):325-332.[doi:10.11992/tis.202102007]
Copy

Nonnegative low-rank matrix factorization with adaptive graph neighbors

References:
[1] ZHAO K, HAIQI P, STEVEN C H H, et al. Robust graph learning from noisy data[J]. IEEE transactions on cybernetics, 2019, 50(5): 1833–1843.
[2] CHEN C F, WEI C P, WANG Y C F. Low-rank matrix recovery with structural incoherence for robust face recognition[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 2618?2625.
[3] DUDA R O, HART P E, STORK D G. Pattern classification[M]. 2nd ed. New York: Wiley-Interscience, 2000.
[4] MAKHOUL J, ROUCOS S, GISH H. Vector quantization in speech coding[J]. Proceedings of the IEEE, 1985, 73(11): 1551–1588.
[5] TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of cognitive neuroence, 1991, 13(6): 556–562.
[6] LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[J]. Nips, 2000, 13(6): 556–562.
[7] YANG C F, YE Mao, ZHAO Jing. Document clustering based on nonnegative sparse matrix factorization[C]//Proceedings of the First International Conference on Natural Computation. Changsha, China, 2005: 557?563.
[8] LIU Guangcan, LIN Zhouchen, YAN Shuicheng, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(1): 171–184.
[9] LU Yuwu, YUAN Chun, ZHU Wenwu, et al. Structurally incoherent low-rank nonnegative matrix factorization for image classification[J]. IEEE transactions on image processing, 2018, 27(11): 5248–5260.
[10] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323–2326.
[11] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. Vancouver, British Columbia, Canada, 2001: 585?2591.
[12] BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples[J]. Journal of machine learning research, 2006, 7(11): 2399–2434.
[13] CAI Deng, HE Xiaofei, HAN Jiawei, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(8): 1548–1560.
[14] CAI Deng, HE Xiaofei, WU Xiaoyun, et al. Non-negative matrix factorization on manifold[C]//Proceedings of 2008 Eighth IEEE International Conference on Data Mining. Pisa, Italy, 2008.
[15] BOTTOU L, VAPNIK V. Local learning algorithm[J]. Neural computation, 1992, 4(6): 888–900.
[16] GU Quanquan, ZHOU Jie. Local learning regularized nonnegative matrix factorization[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence. Pasadena, USA, 2009: 1046?1051.
[17] LI Xuelong, CUI Guosheng, DONG Yongsheng. Graph regularized non-negative low-rank matrix factorization for image clustering[J]. IEEE transactions on cybernetics, 2017, 47(11): 3840–3853.
[18] DU H, HU Q, ZHANG X, et al. Image feature extraction via graph embedding regularized projective non-negative matrix factorization[J]. Communications in computer & information ence, 2014, 483(1): 196–209.
[19] YIN Ming, GAO Junbin, LIN Zhouchen. Laplacian regularized low-rank representation and its applications[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(3): 504–517.
[20] WANG Jianzhong, ZHAO Rui, WANG Yang, et al. Locality constrained graph optimization for dimensionality reduction[J]. Neurocomputing, 2017, 245: 55–67.
[21] MENG Yang, SHANG Ronghua, JIAO Licheng, et al. Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints[J]. Engineering applications of artificial intelligence, 2018, 69: 24–35.
[22] NIE Feiping, WANG Xiaoqian, HUANG Heng. Clustering and projected clustering with adaptive neighbors[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2014.
[23] LEMARéCHAL C, BOYD S, VANDENBERGHE L. convex optimization, Cambridge university press, 2004 hardback, 65 US$, ISBN 0 521 83378 7[J]. European journal of operational research, 2006, 170(1): 326–327.
[24] ZHOU Tianyi, TAO Dacheng. GoDec: randomized low-rank & sparse matrix decomposition in noisy case[C]//Proceedings of the 28th International Conference on Machine Learning. Bellevue, USA, 2011: 33?240.
[25] HUANG Shudong, XU Zenglin, KANG Zhao, et al. Regularized nonnegative matrix factorization with adaptive local structure learning[J]. Neurocomputing, 2020, 382(11): 196–209.
[26] WHITLARK D, DUNTEMAN G H. Principal components analysis[J]. Journal of marketing research, 1990, 27(2): 243.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems