[1]WU Xiaodong,XIONG Weili.Fault detection method and its application using GAN with an encoded input[J].CAAI Transactions on Intelligent Systems,2022,17(3):496-505.[doi:10.11992/tis.202102003]
Copy

Fault detection method and its application using GAN with an encoded input

References:
[1] 彭开香, 马亮, 张凯. 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43(3): 349–365
PENG Kaixiang, MA Liang, ZHANG Kai. Review of quality-related fault detection and diagnosis techniques for complex industrial processes[J]. Acta automatica sinica, 2017, 43(3): 349–365
[2] 刘强, 卓洁, 郎自强, 等. 数据驱动的工业过程运行监控与自优化研究展望[J]. 自动化学报, 2018, 44(11): 1944–1956
LIU Qiang, ZHUO Jie, LANG Ziqiang, et al. Perspectives on data-driven operation monitoring and self-optimization of industrial processes[J]. Acta automatica sinica, 2018, 44(11): 1944–1956
[3] 曹跃, 陈志文, 袁小锋, 等. 部分子块通讯的分布式PCA厂级工业过程监测方法[J]. 控制与决策, 2020, 35(6): 1281–1290
CAO Yue, CHEN Zhiwen, YUAN Xiaofeng, et al. Distributed PCA for plant-wide processes monitoring with partial block communication[J]. Control and decision, 2020, 35(6): 1281–1290
[4] 童楚东, 史旭华, 蓝艇. 正交信号校正的自回归模型及其在动态过程监测中的应用[J]. 控制与决策, 2016, 31(8): 1505–1508
TONG Chudong, SHI Xuhua, LAN Ting. Orthogonal signal correction based auto-regression model with application to dynamic process monitoring[J]. Control and decision, 2016, 31(8): 1505–1508
[5] 冯立伟, 张成, 李元, 等. 基于标准距离k近邻的多模态过程故障检测策略[J]. 控制理论与应用, 2019, 36(4): 553–560
FENG Liwei, ZHANG Cheng, LI Yuan, et al. Fault detection strategy of standard-distance-based k nearest neighbor rule in multimode processes[J]. Control theory and applications, 2019, 36(4): 553–560
[6] HUANG Yi, SUN Shiyu, DUAN Xiusheng, et al. A study on deep neural networks framework[C]//2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Xi’an: IEEE, 2016: 1519–1522.
[7] CHEN Xuemei, ZHENG Xuelong, WANG Zijia, et al. Multi-frequency data fusion for attitude estimation based on multi-layer perception and Cubature Kalman Filter[J]. IEEE access, 2020, 8: 144373–144381.
[8] LIU Shuo, LIU Yulong, GU Yuhai, et al. Method of extracting gear fault feature based on stacked autoencoder[J]. The journal of engineering, 2019, 2019(23): 8765–8769.
[9] MIAO Jun, SUN Keqiang, LIAO Xuan, et al. Human segmentation based on compressed deep convolutional neural network[J]. IEEE access, 2020, 8: 167585–167595.
[10] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Advances in neural information processing systems, 2014, 3(11): 2672–2680.
[11] LUC P, COUPRIE C, CHINTALA S, et al. Semantic segmentation using adversarial networks[EB/OL].(2016–11-25)[2021-02-03]https://arxiv.org/abs/1611.08408.
[12] LI Jianan, LIANG Xiaodan, WEI Yunchao, et al. Perceptual generative adversarial networks for small object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 1951–1959.
[13] REED S E, AKATA Z, YAN Xinchen, et al. Generative adversarial text to image synthesis[C]//Proceedings of the 33nd International Conference on Machine Learning (ICML). New York: ACM, 2016: 1060–1069.
[14] JIANG Tao, LI Yunsong, XIE Weiying, et al. Discriminative reconstruction constrained generative adversarial network for hyperspectral anomaly detection[J]. IEEE transactions on geoscience and remote sensing, 2020, 58(7): 4666–4679.
[15] LEE Y O, JO J, HWANG J. Application of deep neural network and generative adversarial network to industrial maintenance: a case study of induction motor fault detection[C]//2017 IEEE International Conference on Big Data (Big Data). Boston: IEEE, 2017: 3248–3253.
[16] VIOLA J, CHEN Yangquan, WANG Jing. FaultFace: deep convolutional generative adversarial network (DCGAN) based ball-bearing failure detection method[J]. Information sciences, 2021, 542: 195–211.
[17] 顾炳斌, 熊伟丽, 史旭东. 基于故障敏感主元的多块PCA故障监测方法[J]. 高校化学工程学报, 2019, 33(6): 1499–1508
GU Bingbin, XIONG Weili, SHI Xudong. Multi-block PCA process monitoring based on fault sensitive principal components[J]. Journal of chemical engineering of Chinese universities, 2019, 33(6): 1499–1508
[18] WANG Huangang, LI Xin, ZHANG Tao. Generative adversarial network based novelty detection usingminimized reconstruction error[J]. Frontiers of information technology and electronic engineering, 2018, 19(1): 116–125.
[19] 金晓航, 许壮伟, 孙毅, 等. 基于生成对抗网络的风电机组在线状态监测[J]. 仪器仪表学报, 2020, 41(4): 68–76
JIN Xiaohang, XU Zhuangwei, SUN Yi, et al. Online condition monitoring of wind turbine based on generative adversarial network[J]. Chinese journal of scientific instrument, 2020, 41(4): 68–76
[20] YANG Xin, FENG Dajun. Generative adversarial network based anomaly detection on the benchmark Tennessee Eastman process[C]//2019 5th International Conference on Control, Automation and Robotics (ICCAR). Beijing: IEEE, 2019: 644–648.
[21] SPYRIDON P, BOUTALIS Y S. Generative adversarial networks for unsupervised fault detection[C]//2018 European Control Conference (ECC). Limassol: IEEE, 2018: 691–696.
[22] 陈伟宏, 安吉尧, 李仁发, 等. 深度学习认知计算综述[J]. 自动化学报, 2017, 43(11): 1886–1897
CHEN Weihong, AN Jiyao, LI Renfa, et al. Review on deep-learning-based cognitive computing[J]. Acta automatica sinica, 2017, 43(11): 1886–1897
[23] 袁非牛, 章琳, 史劲亭, 等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1): 203–230
YUAN Feiniu, ZHANG Lin, SHI Jinting, et al. Theories and applications of auto-encoder neural networks: a literature survey[J]. Chinese journal of computers, 2019, 42(1): 203–230
[24] 顾炳斌, 熊伟丽. 基于多块信息提取的PCA故障诊断方法[J]. 化工学报, 2019, 70(2): 736–749
GU Bingbin, XIONG Weili. Fault diagnosis based on PCA method with multi-block information extraction[J]. CIESC journal, 2019, 70(2): 736–749
[25] GE Zhiqiang, SONG Zhihuan. Distributed PCA model for plant-wide process monitoring[J]. Industrial & engineering chemistry research, 2013, 52(5): 1947–1957.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems