[1]LIU Minghua,ZHANG Qiang.Prediction of strip crown based on support vector machine and neural network[J].CAAI Transactions on Intelligent Systems,2022,17(3):506-514.[doi:10.11992/tis.202101002]
Copy

Prediction of strip crown based on support vector machine and neural network

References:
[1] 薛涛, 杜凤山, 孙静娜, 等. 基于FEM-ANN的冷轧带钢轧制力预报[J]. 中南大学学报:自然科学版, 2013, 44(11): 4456–4460
XUE Tao, DU Fengshan, SUN Jingna, et al. Rolling force prediction of cold strip rolling based on FEM-ANN[J]. Journal of Central South University: (science and technology edition), 2013, 44(11): 4456–4460
[2] DENG Jifei, SUN Jie, PENG Wen, et al. Application of neural networks for predicting hot-rolled strip crown[J]. Applied soft computing, 2019, 78: 119–131.
[3] SAMAREH S P H, KHADEMHOSSEINI B H, ALIZADEH Y, et al. Calculation of work roll initial crown based on desired strip profile in hot rolling[J]. Neural Computing and Applications, 2013, 24(5): 1123–1133.
[4] 张强. 基于支持向量机的热轧板带轧制力预测[D]. 西安: 西安建筑科技大学, 2021: 2.
ZHANG Qiang. Prediction of rolling force of hot rolled strip based on support vector machine[D]. Xi’an: Xi’an University of Architecture and Technology, 2021: 2.
[5] CHUN M S, BIGLOU J, Lenard J G, et al. Using neural networks to predict parameters in the hot working of aluminum alloys[J]. Journal of materials processing technology, 1999, 86: 245–251.
[6] 冀秀梅, 王龙, 高克伟, 等. 极限学习机在中厚板轧制力预报中的应用[J]. 钢铁研究学报, 2020, 32(5): 393–399
JI Xiumei, WANG Long, GAO Kewei, et al. Application of ELM to predict plate rolling force[J]. Journal of iron and steel research, 2020, 32(5): 393–399
[7] 马威, 李维刚, 赵云涛, 等. 基于深度学习的热连轧轧制力预测[J]. 钢铁研究学报, 2019, 31(9): 805–815
MA Wei, LI Weigang, ZHAO Yuntao, et al. Prediction of hot-rolled roll force based on deep learning[J]. Journal of iron and steel research, 2019, 31(9): 805–815
[8] WANG Liyong, LI Le, ZHANG Zhihua. Accurate descriptions of hot flow behaviors across β Transus of Ti-6Al-4V alloy by intelligence algorithm GA-SVR[J]. Journal of materials engineering and performance, 2016, 25(9): 3912–3923.
[9] 王前锋. 基于改进型支持向量机算法的轧机轧制力预测[J]. 锻压技术, 2019, 44(4): 131–137
WANG Qianfeng. Rolling force prediction of rolling mill based on improved support vector machine algorithm[J]. Forging and stamping technology, 2019, 44(4): 131–137
[10] 方敏. 轧制过程板形预测控制的研究[D]. 杭州: 杭州电子科技大学, 2015: 55.
FANG Min. Research on flatness prediction control in rolling process[D]. Hangzhou: Hangzhou Dianzi University, 2015: 55.
[11] 朱永波, 张飞, 张勇军, 等. 基于粒子群优化的带钢凸度神经网络预测模型研究[J]. 冶金自动化, 2019, 43(2): 11–15
ZHU Yongbo, ZHANG Fei, ZHANG Yongjun, et al. Particle swarm optimized neural network for strip crown prediction model research[J]. Metallurgical industry automation, 2019, 43(2): 11–15
[12] CHENG M Y, HOANG N D, WU Y W. Hybrid intelligence approach based on LS-SVM and differential evolution for construction cost index estimation: A Taiwan case study[J]. Automation in construction, 2013, 35: 306–313.
[13] VAPNIK V N. The nature of statistical learning theory[J]. IEEE transactions on neural networks, 1997, 8(6): 1564–1564.
[14] VAPNIK V N. An overview of statistical learning theory[J]. IEEE transactions on neural networks, 1999, 10(5): 988–999.
[15] WANG Hu, LI Enying, LI Guangyao. The least square support vector regression coupled with parallel sampling scheme metamodeling technique and application in sheet forming optimization[J]. Materials and design, 2009, 30(5): 1468–1479.
[16] FEI Shengwei, HE Chuangxin. Prediction of dissolved gases content in power transformer oil using BASA-based mixed kernel RVR model[J]. International journal of green energy, 2019, 16(8): 652–656.
[17] WU Dongsheng, YANG Qin, WANG Dazhi. Rolling force prediction based on PSO optimized support vector regression[C]//Seventh International Conference on Natural Computation. Shanghai: IEEE, 2011: 839–483.
[18] WANG Dongshu, TAN Dapei, LIU Lei. Particle swarm optimization algorithm: an overview[J]. Soft computing, 2017, 22(2): 387–408.
[19] Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]// Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya: IEEE, 1995: 39–43.
[20] 刘明华, 张强, 刘英华, 等. 基于机器学习的热轧轧制力预测[J]. 锻压技术, 2021, 46(10): 233–241
LIU Minghua, ZHANG Qiang, LIU Yinghua, et al. Rolling force prediction of hot rolling based on machine learning method[J]. Forging and stamping technology, 2021, 46(10): 233–241
[21] 杨轻, 杨忠, 许昌亮, 等. 改进PSO算法及其无人机电力巡线规划应用[J]. 应用科技, 2019, 46(3): 80–85.
YANG Qing, YANG Zhong, XU Changliang, Improved particle swarm optimization algorithm and its application in unmanned aerial vehicle power line patrol[J]. Applied science and technology, 2019, 46(3): 80–85.
[22] 高喜峰, 翟立宾, 徐万海. 应用BP神经网络的柔性圆柱涡激振动预报[J]. 哈尔滨工程大学学报, 2020, 41(8): 1150–1155
GAO Xifeng, ZHAI Libin, XU Wanhai. Predicton of vortex-induced vibration of flexible cylinder using BP neural network[J]. Journal of Harbin Engineering University, 2020, 41(8): 1150–1155
[23] 张旭, 杜景林. 改进PSO-GA-BP的PM2.5浓度预测[J]. 计算机工程与设计, 2019, 40(6): 1718–1723
ZHANG Xu, DU Jinglin. PM2.5 concentration prediction based on improved PSO-GA-BP[J]. Computer engineering and design, 2019, 40(6): 1718–1723
[24] ZHOU Yuting, XIA Yufeng, JIANG Lai, et al. Modeling of the hot flow behaviors for Ti-6Al-4V-0.1Ru alloy by GA-BPNN model and its application[J]. High Temperature materials and processes, 2018, 37(6): 551–562.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems