[1]GAO Shuping,ZHAO Qingyuan,QI Xiaogang,et al.Research on the improved image classification method of MobileNet[J].CAAI Transactions on Intelligent Systems,2021,16(1):11-20.[doi:10.11992/tis.202012034]
Copy

Research on the improved image classification method of MobileNet

References:
[1] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[2] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with con-volutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:1-9.
[3] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:770-778.
[4] HAN K, WANG Y, TIAN Q, et al. GhostNet:More features from cheap operations[J]. arXiv preprint arXiv:1911.11907, 2019.
[5] ZHANG X, ZHOU X, LIN M, et al. Shufflenet:an extremely efficient convolutional neural network for mobile devic-es[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:6848-6856.
[6] HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets:efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[7] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetv2:inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:4510-4520.
[8] MA Ningning, ZHANG Xiangyu, ZHENG Haitao, et al. ShuffleNet V2:practical guidelines for efficient CNN architecture design[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany, 2018:116-131.
[9] IANDOLA F N, HAN Song, MOSKEWICZ M W, et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[J]. arXiv:1602.07360, 2016.
[10] SUN Ke, LI Mingjie, LIU Dong, et al. IGCV3:interleaved low-rank group convolutions for efficient deep neural networks[J]. arXiv:1806.00178, 2018.
[11] 黄跃珍, 王乃洲, 梁添才, 等. 基于改进型MobileNet网络的车型识别方法[J]. 电子技术与软件工程, 2019(1):22-24
HUANG Yuezhen, WANG Naizhou, LIANG Tiancai, et al. Vehicle identification method based on improved mobilenet network[J]. Electronic technology and software engineering, 2019(1):22-24
[12] 刘鸿智. 面向移动设备的轻型神经网络的改进与实现[D]. 呼和浩特:内蒙古大学, 2019.
LIU Hongzhi. Improvement and implementation of lightweight neural network for mobile devices[D]. Hohhot:Inner Mongolia University, 2019.
[13] 郭奕君, 努尔毕亚·亚地卡尔, 朱亚俐, 等. 基于MobileNet网络多国人脸分类识别[J]. 图像与信号处理, 2020, 9(3):146-155.GUO Yijun, ABUDIRIYIMU A, YADIKAR N, et al. Multinational face classification and recognition based on MobileNet network[J]. Journal of image and signal processing, 2020, 9(3):146-155.
[14] DUBEY A K, JAIN V. Comparative study of convolution neural network’s relu and leaky-relu activation functions[M]. MISHRA S, SOOD Y R, TOMAR A. Applications of Computing, Automation and Wireless Systems in Electrical Engineering. Singapore:Springer, 2019:873-880.
[15] CHEN Yinpeng, DAI Xiyang, LIU Mengchen, et al. Dynamic ReLU[J]. arXiv:2003.10027, 2020.
[16] KRIZHEVSKY A. Learning multiple layers of features from tiny images[R]. Toronto:University of Toronto, 2009.
[17] DUGAN P, CUKIERSKI W, SHIU Y, et al. Kaggle competition[J]. Cornell University, the ICML, 2013.
[18] XU Bing, WANG Naiyan, CHEN Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv:1505.00853, 2015.
[19] RANZATO M A, HINTON G E. Modeling pixel means and covariances using factorized third-order Boltzmann machines[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010:2551-2558.
[20] YU Kai, ZHANG Tong. Improved local coordinate Coding using local tangents[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel, 2010.
[21] CHAN T H, JIA Kui, GAO Shenghua, et al. PCANet:a simple deep learning baseline for image classification?[J]. IEEE transactions on image processing, 2015, 24(12):5017-5032.
[22] ZEILER M D, FERGUS R. Stochastic pooling for regularization of deep convolutional neural networks[J]. arXiv:1301.3557, 2013.
[23] 刘金利, 张培玲. 改进LeNet-5网络在图像分类中的应用[J]. 计算机工程与应用, 2019, 55(15):32-37, 95.
LIU Jinli, ZHANG Peiling. Application of improved LeNet-5 network in image classification[J]. Computer engineering and applications, 2019 (15):5.
[24] GOODFELLOW I J, WARDE FARLEY D, MIRZA M, et al. Maxout networks[J]. arXiv preprint arXiv:1302.4389, 2013.
[25] LIN Min, CHEN Qiang, YAN Shuicheng. Network in network[J]. arXiv:1312.4400, 2013.
[26] SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Highway networks[J]. arXiv:1505.00387, 2015.
Similar References:

Memo

-

Last Update: 2021-02-25

Copyright © CAAI Transactions on Intelligent Systems