[1]ZHAO Wenqing,YANG Panpan.Target detection based on bidirectional feature fusion and an attention mechanism[J].CAAI Transactions on Intelligent Systems,2021,16(6):1098-1105.[doi:10.11992/tis.202012029]
Copy

Target detection based on bidirectional feature fusion and an attention mechanism

References:
[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 580-587.
[2] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International journal of computer vision, 2013, 104(2): 154-171.
[3] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
[4] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1440-1448.
[5] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 779-788.
[7] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 6517-6525.
[8] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherland, 2016: 21-37.
[9] FU Chengyang, LIU Wei, RANGA A, et al. DSSD: deconvolutional single shot detector[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA, 2017: 2881-2890.
[10] SINGH B, DAVIS L S. An analysis of scale invariance in object detection-SNIP[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 3578-3587.
[11] 温静, 李雨萌. 基于多尺度反卷积深度学习的显著性检测[J]. 计算机科学, 2020, 47(11): 179-185
WEN Jing, LI Yumeng. Salient object detection based on multi-scale deconvolution deep learning[J]. Computer science, 2020, 47(11): 179-185
[12] LI Jianan, LIANG Xiaodan, WEI Yunchao, et al. Perceptual generative adversarial networks for small object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 1951-1959.
[13] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014: 2672-2680.
[14] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 936-944.
[15] 刘涛, 汪西莉. 采用卷积核金字塔和空洞卷积的单阶段目标检测[J]. 中国图象图形学报, 2020, 25(1): 102-112
LIU Tao, WANG Xili. Single-stage object detection using filter pyramid and atrous convolution[J]. Journal of image and graphics, 2020, 25(1): 102-112
[16] 陈景明, 金杰, 王伟锋. 基于特征金字塔网络的改进算法[J]. 激光与光电子学进展, 2019, 56(21): 211505
CHEN Jingming, JIN Jie, WANG Weifeng. Improved algorithm based on feature pyramid networks[J]. Laser & optoelectronics progress, 2019, 56(21): 211505
[17] 张涛, 张乐. 一种基于多尺度特征融合的目标检测算法[J]. 激光与光电子学进展, 2021, 58(2): 0215003
ZHANG Tao, ZHANG Le. Multiscale feature fusion-based object detection algorithm[J]. Laser & optoelectronics progress, 2021, 58(2): 0215003
[18] 和超, 张印辉, 何自芬. 多尺度特征融合工件目标语义分割[J]. 中国图象图形学报, 2020, 25(3): 476-485
HE Chao, ZHANG Yinhui, HE Zifen. Semantic segmentation of workpiece target based on multiscale feature fusion[J]. Journal of image and graphics, 2020, 25(3): 476-485
[19] 鞠默然, 罗江宁, 王仲博, 等. 融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40(13): 1315002
JU Moran, LUO Jiangning, WANG Zhongbo, et al. Multi-scale target detection algorithm based on attention mechanism[J]. Acta optica sinica, 2020, 40(13): 1315002
[20] 张筱晗, 姚力波, 吕亚飞, 等. 双向特征融合的数据自适应SAR图像舰船目标检测模型[J]. 中国图象图形学报, 2020, 25(9): 1943-1952
ZHANG Xiaohan, YAO Libo, LV Yafei, et al. Data-adaptive single-shot ship detector with a bidirectional feature fusion module for SAR images[J]. Journal of image and graphics, 2020, 25(9): 1943-1952
[21] 高杨, 肖迪. 基于多层特征融合的小目标检测算法[J]. 计算机工程与设计, 2020, 41(7): 1905-1909
GAO Yang, XIAO Di. Small object detection algorithm based on multi-feature fusion[J]. Computer engineering and design, 2020, 41(7): 1905-1909
[22] 杨锐, 张宝华, 张艳月, 等. 基于深度特征自适应融合的运动目标跟踪算法[J]. 激光与光电子学进展, 2020, 57(18): 181501
YANG Rui, ZHANG Baohua, ZHANG Yanyue, et al. Moving object tracking algorithm based on depth feature adaptive fusion[J]. Laser & optoelectronics progress, 2020, 57(18): 181501
[23] 赵文清, 程幸福, 赵振兵, 等. 注意力机制和Faster RCNN相结合的绝缘子识别[J]. 智能系统学报, 2020, 15(1): 92-98
ZHAO Wenqing, CHENG Xingfu, ZHAO Zhenbing, et al. Insulator recognition based on attention mechanism and faster RCNN[J]. CAAI transactions on intelligent systems, 2020, 15(1): 92-98
[24] 徐诚极, 王晓峰, 杨亚东. Attention-YOLO: 引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55(6): 13-23
XU Chengji, WANG Xiaofeng, YANG yadong. Attention-YOLO: YOLO detection algorithm that introduces attention mechanism[J]. Computer engineering and applications, 2019, 55(6): 13-23
[25] 单义, 杨金福, 武随烁, 等. 基于跳跃连接金字塔模型的小目标检测[J]. 智能系统学报, 2019, 14(6): 1144-1151
SHAN Yi, YANG Jinfu, WU Suishuo, et al. Skip feature pyramid network with a global receptive field for small object detection[J]. CAAI transactions on intelligent systems, 2019, 14(6): 1144-1151
Similar References:

Memo

-

Last Update: 2021-12-25

Copyright © CAAI Transactions on Intelligent Systems