[1]CHEN Lichao,CHAO Xin,PAN Lihu,et al.Fine-grained vehicle-type identification based on partially-focused DenseNet[J].CAAI Transactions on Intelligent Systems,2022,17(2):402-410.[doi:10.11992/tis.202012012]
Copy

Fine-grained vehicle-type identification based on partially-focused DenseNet

References:
[1] 杨娟, 曹浩宇, 汪荣贵, 等. 区域建议网络的细粒度车型识别[J]. 中国图象图形学报, 2018, 23(6): 837–845
YANG Juan, CAO Haoyu, WANG Ronggui, et al. Fine-grained car recognition method based on region proposal networks[J]. Journal of image and graphics, 2018, 23(6): 837–845
[2] LIAO Liang, HU Ruimin, XIAO Jun, et al. Exploiting effects of parts in fine-grained categorization of vehicles[C]//Proceedings of 2015 IEEE International Conference on Image Processing. Quebec City, Canada, 2015: 745-749.
[3] KRAUSE J, STARK M, DENG Jia, et al. 3D object representations for fine-grained categorization[C]//Proceedings of 2013 IEEE International Conference on Computer Vision Workshops. Sydney, Australia, 2014: 554-561.
[4] FANG Jie, ZHOU Yu, YU Yao, et al. Fine-grained vehicle model recognition using a coarse-to-fine convolutional neural network architecture[J]. IEEE transactions on intelligent transportation systems, 2017, 18(7): 1782–1792.
[5] SHI Weiwei, GONG Yihong, TAO Xiaoyu, et al. Fine-grained image classification using modified DCNNs trained by cascaded softmax and generalized large-margin losses[J]. IEEE transactions on neural networks and learning systems, 2019, 30(3): 683–694.
[6] KE Xiao, ZHANG Yufeng. Fine-grained vehicle type detection and recognition based on dense attention network[J]. Neurocomputing, 2020, 399: 247–257.
[7] FU Jianlong, ZHENG Heliang, MEI Tao. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 4438-4446.
[8] 马力, 王永雄. 基于稀疏化双线性卷积神经网络的细粒度图像分类[J]. 模式识别与人工智能, 2019, 32(4): 336–344
MA Li, WANG Yongxiong. Fine-grained visual classification based on sparse bilinear convolutional neural network[J]. Pattern recognition and artificial intelligence, 2019, 32(4): 336–344
[9] 王阳, 刘立波. 面向细粒度图像分类的双线性残差注意力网络[J]. 激光与光电子学进展, 2020, 57(12): 121011
WANG Yang, LIU Libo. Bilinear residual attention networks for fine-grained image classification[J]. Laser & optoelectronics progress, 2020, 57(12): 121011
[10] VALEV K, SCHUMANN A, SOMMER L, et al. A systematic evaluation of recent deep learning architectures for fine-grained vehicle classification[C]//Proceedings of SPIE 10649, Pattern Recognition and Tracking XXIX. Orlando, USA, 2018: 1064902.
[11] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 4700-4708.
[12] 白琮, 黄玲, 陈佳楠, 等. 面向大规模图像分类的深度卷积神经网络优化[J]. 软件学报, 2018, 29(4): 1029–1038
BAI Cong, HUANG Ling, CHEN Jianan, et al. Optimization of deep convolutional neural network for large scale image classification[J]. Journal of software, 2018, 29(4): 1029–1038
[13] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J/OL]. (2020?01?01)[2020-07-01]https://arxiv.org/abs/1502.03167.
[14] YAROTSKY D. Error bounds for approximations with deep ReLU networks[J]. Neural networks, 2017, 94: 103–114.
[15] 陈立潮, 朝昕, 曹建芳, 等. 融合独立组件的ResNet在细粒度车型识别中的应用[J]. 计算机工程与应用, 2021, 57(11): 248–253
CHEN Lichao, CHAO Xin, CAO Jianfang, et al. Application of ResNet with independent components in fine-grained vehicle recognition[J]. Computer engineering and applications, 2021, 57(11): 248–253
[16] 周安众, 罗可. 一种卷积神经网络的稀疏性Dropout正则化方法[J]. 小型微型计算机系统, 2018, 39(8): 1674–1679
ZHOU Anzhong, LUO Ke. Sparse Dropout regularization method for convolutional neural networks[J]. Journal of Chinese computer systems, 2018, 39(8): 1674–1679
[17] ZHAO Bo, WU Xiao, FENG Jiashi, et al. Diversified visual attention networks for fine-grained object classification[J]. IEEE transactions on multimedia, 2017, 19(6): 1245–1256.
[18] LI Peihua, XIE Jiangtao, WANG Qilong, et al. Towards faster training of global covariance pooling networks by iterative matrix square root normalization[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 47-955.
[19] CHANG Dongliang, DING Yifeng, XIE Jiyang, et al. The devil is in the channels: mutual-channel loss for fine-grained image classification[J]. IEEE transactions on image processing, 2020, 29: 4683–4695.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems