[1]XU Wei,ZHENG Hao,YANG Zhongxue.Apex frame microexpression recognition based on dual attention model and transfer learning[J].CAAI Transactions on Intelligent Systems,2021,16(6):1015-1020.[doi:10.11992/tis.202010031]
Copy

Apex frame microexpression recognition based on dual attention model and transfer learning

References:
[1] SHEN Xunbing, WU Qi, FU Xiaolan. Effects of the duration of expressions on the recognition of microexpressions[J]. Journal of Zhejiang University SCIENCE B, 2012, 13(3): 221-230.
[2] ZHAO Guoying, PIETIKAINEN M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 915-928.
[3] WANG Yandan, SEE J, PHAN R C W, et al. LBP with six intersection points: reducing redundant information in LBP-TOP for micro-expression recognition[C]//Proceedings of the 12th Asian Conference on Computer Vision. Singapore, Singapore, 2014: 525-537.
[4] 卢官明, 杨成, 杨文娟, 等. 基于LBP-TOP特征的微表情识别[J]. 南京邮电大学学报(自然科学版), 2017, 37(6): 1-7
LU Guanming, YANG Cheng, YANG Wenjuan, et al. Micro-expression recognition based on LBP-TOP features[J]. Journal of Nanjing University of Posts and Telecommunications (natural science edition), 2017, 37(6): 1-7
[5] WANG Sujing, YAN Wenjing, LI Xiaobai, et al. Micro-expression recognition using dynamic textures on tensor independent color space[C]//Proceedings of the 22nd International Conference on Pattern Recognition. Stockholm, Sweden, 2014: 4678-4683.
[6] WANG Sujing, YAN Wenjing, LI Xiaobai, et al. Micro-expression recognition using color spaces[J]. IEEE transactions on image processing, 2015, 24(12): 6034-6047.
[7] XU Feng, ZHANG Junping, WANG J Z. Microexpression identification and categorization using a facial dynamics map[J]. IEEE transactions on affective computing, 2017, 8(2): 254-267.
[8] LIU Yongjin, ZHANG Jinkai, YAN Wenjing, et al. A main directional mean optical flow feature for spontaneous micro-expression recognition[J]. IEEE transactions on affective computing, 2016, 7(4): 299-310.
[9] 张轩阁, 田彦涛, 郭艳君, 等. 基于光流与LBP-TOP特征结合的微表情识别[J]. 吉林大学学报(信息科学版), 2015, 33(5): 516-523
ZHANG Xuange, TIAN Yantao, GUO Yanjun, et al. Micro-Expression recognition based on feature combination of optical flow and LBP-TOP[J]. Journal of Jilin University (information science edition), 2015, 33(5): 516-523
[10] OH Y H, LE NGO A C, SEE J, et al. Monogenic Riesz wavelet representation for micro-expression recognition[C]//Proceedings of 2015 IEEE International Conference on Digital Signal Processing. Singapore, Singapore, 2015: 1237-1241.
[11] WU Qi, SHEN Xunbing, FU Xiaolan. The machine knows what you are hiding: an automatic micro-expression recognition system[C]//Proceedings of the 4th International Conference on Affective Computing and Intelligent Interaction. Memphis, TN, USA, 2011: 152-162.
[12] ZHANG Peng, BEN Xianye, YAN Rui, et al. Micro-expression recognition system[J]. Optik, 2016, 127(3): 1395-1400.
[13] PATEL D, HONG Xiaopeng, ZHAO Guoying. Selective deep features for micro-expression recognition[C]//Proceedings of the 23rd International Conference on Pattern Recognition. Cancun, Mexico, 2016: 2258-2263.
[14] PENG Min, WANG Chongyang, CHEN Tong, et al. Dual temporal scale convolutional neural network for micro-expression recognition[J]. Frontiers in psychology, 2017, 8: 1745.
[15] VERMA M, VIPPARTHI S K, SINGH G, et al. LEARNet: dynamic imaging network for micro expression recognition[J]. IEEE transactions on image processing, 2019, 29: 1618-1627.
[16] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany, 2018: 3-19.
[17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770-778.
[18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 2980-2988.
[19] LIONG S T, SEE J, WONG K S, et al. Less is more: micro-expression recognition from video using apex frame[J]. Signal processing: image communication, 2018, 62: 82-92.
[20] GAN Y S, LIONG S T, YAU W C, et al. OFF-ApexNet on micro-expression recognition system[J]. Signal processing: image communication, 2019, 74: 129-139.
[21] YAN Wenjing, LI Xiaobai, WANG Sujing, et al. CASME II: an improved spontaneous micro-expression database and the baseline evaluation[J]. PLoS One, 2014, 9(1): e86041.
[22] LUCEY P, COHN J F, KANADE T, et al. The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops. San Francisco, CA, USA, 2010: 94-101.
[23] LIONG S T, SEE J, PHAN R C W, et al. Subtle expression recognition using optical strain weighted features[C]//Proceedings of the Asian Conference on Computer Vision. Singapore, Singapore, 2014: 644-657.
[24] 孔慧芳, 钱世超, 闫嘉鹏. 基于不均衡数据与迁移学习的面部微表情识别[J]. 合肥工业大学学报(自然科学版), 2020, 43(7): 895-900
KONG Huifang, QIAN Shichao, YAN Jiapeng. Image based facial micro-expression recognition using transfer learning on imbalanced data[J]. Journal of Hefei University of Technology (natural science edition), 2020, 43(7): 895-900
Similar References:

Memo

-

Last Update: 2021-12-25

Copyright © CAAI Transactions on Intelligent Systems