[1]QI Pengyu,WANG Hongyuan,ZHANG Ji,et al.Crowded pedestrian detection algorithm based on improved FCOS[J].CAAI Transactions on Intelligent Systems,2021,16(4):811-818.[doi:10.11992/tis.202010012]
Copy

Crowded pedestrian detection algorithm based on improved FCOS

References:
[1] NI Tongguang, DING Zongyuan, CHEN Fuhua, et al. Relative distance metric leaning based on clustering centralization and projection vectors learning for person re-identification[J]. IEEE access, 2018, 6: 11405-11411.
[2] WANG Hongyuan, DING Zongyuan, ZHANG Ji, et al. Person reidentification by semisupervised dictionary rectification learning with retraining module[J]. Journal of electronic imaging, 2018, 27(4): 043043.
[3] 戴臣超, 王洪元, 倪彤光, 等. 基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别[J]. 计算机研究与发展, 2019, 56(8): 1632-1641
DAI Chenchao, WANG Hongyuan, NI Tongguang, et al. Person re-identification based on deep convolutional generative adversarial network and expanded neighbor reranking[J]. Journal of computer research and development, 2019, 56(8): 1632-1641
[4] JIAO Licheng, ZHANG Fan, LIU Fang, et al. A survey of deep learning-based object detection[J]. IEEE access, 2019, 7: 128837-128868.
[5] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[6] DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain, 2016: 379-387.
[7] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 2961-2969.
[8] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 2980-2988.
[9] CAI Zhaowei, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 6154-6162.
[10] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 7263-7271.
[11] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 21-37.
[12] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019: 9627-9636.
[13] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 4438-4446.
[14] LIU Fayao, SHEN Chunhua, LIN Guosheng, et al. Learning depth from single monocular images using deep convolutional neural fields[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(10): 2024-2039.
[15] CHEN Yu, SHEN Chunhua, WEI Xiushen, et al. Adversarial PoseNet: a structure-aware convolutional network for human pose estimation[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 1212-1221.
[16] BOOMINATHAN L, KRUTHIVENTI S S S, BABU R V. CrowdNet: a deep convolutional network for dense crowd counting[C]//Proceedings of the 24th ACM International Conference on Multimedia. Amsterdam, The Netherlands, 2016: 640-644.
[17] YU Jiahui, JIANG Yuning, WANG Zhangyang, et al. UnitBox: an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. Amsterdam, The Netherlands, 2016: 516-520.
[18] HUANG Lichao, YANG Yi, DENG Yafeng, et al. DenseBox: unifying landmark localization with end to end object detection[EB/OL]. (2015?09-19)[2021?05-07] https://arxiv.org/abs/1509.04874.
[19] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 2117-2125.
[20] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019: 658-666.
[21] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770-778.
[22] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 4700-4708.
[23] LEE Y, HWANG J W, LEE S, et al. An energy and GPU-computation efficient backbone network for real-time object detection[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, USA, 2019: 752-760.
[24] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 7132-7141.
[25] SHAO Shuai, ZHAO Zijian, LI Boxun, et al. CrowdHuman: a benchmark for detecting human in a crowd[EB/OL]. (2018?04-30)[2021?05-07] https://arxiv.org/pdf/1805.00123.pdf.
[26] LIU Songtao, HUANG Di, WANG Yunhong. Adaptive NMS: refining pedestrian detection in a crowd[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019: 6459-6468.
[27] GOYAL P, DOLLáR P, GIRSHICK R, et al. Accurate, large minibatch SGD: training ImageNet in 1 hour[EB/OL]. (2018?04-30)[2021?05-07] https://arxiv.org/pdf/1706.02677.pdf.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems