[1]LI Shunyong,WANG Gaibian.New MRMR feature selection algorithm[J].CAAI Transactions on Intelligent Systems,2021,16(4):649-661.[doi:10.11992/tis.202009016]
Copy

New MRMR feature selection algorithm

References:
[1] 王娟, 慈林林, 姚康泽. 特征选择方法综述[J]. 计算机工程与科学, 2005, 27(12): 68-71
WANG Juan, CI Linlin, YAO Kangze. A survey of feature selection[J]. Computer engineering and science, 2005, 27(12): 68-71
[2] 周红标, 乔俊飞. 基于高维k-近邻互信息的特征选择方法[J]. 智能系统学报, 2017, 12(5): 595-600
ZHOU Hongbiao, QIAO Junfei. Feature selection method based on high dimensional k-nearest neighbors mutual information[J]. CAAI transactions on intelligent systems, 2017, 12(5): 595-600
[3] 徐洪峰, 孙振强. 多标签学习中基于互信息的快速特征选择方法[J]. 计算机应用, 2019, 39(10): 2815-2821
XU Hongfeng, SUN Zhenqiang. Fast feature selection method based on mutual information in multi-label learning[J]. Journal of computer applications, 2019, 39(10): 2815-2821
[4] 计智伟, 胡珉. 一种双重过滤式特征选择算法[J]. 计算机工程与应用, 2011, 47(19): 190-193, 206
JI Zhiwei, HU Min. A double-filtered feature selection algorithm[J]. Computer engineering and applications, 2011, 47(19): 190-193, 206
[5] 吴红霞, 吴悦, 刘宗田, 等. 基于Relief和SVM-RFE的组合式SNP特征选择[J]. 计算机应用研究, 2012, 29(6): 2074-2077
WU Hongxia, WU Yue, LIU Zongtian, et al. Combined SNP feature selection based on Relief and SVM-RFE[J]. Application research of computers, 2012, 29(6): 2074-2077
[6] 肖忆南, 谢榕, 杜娟. 基于t检验和弹性网的数据分类特征选择方法[J]. 小型微型计算机系统, 2015, 36(10): 2213-2217
XIAO Yinan, XIE Rong, DU Juan. Feature selection method for data classification based on t-test and elastic net[J]. Journal of Chinese computer systems, 2015, 36(10): 2213-2217
[7] SRIVIDHYA S, MALLIKA R. Feature selection for high dimensional imbalanced datasets using game theory and fisher score[J]. Journal of advanced research in dynamical and control systems, 2017, 9(8): 195-202.
[8] SAINZ L V, SAINZ J S, LáZARO M. Oscillatory brain activity in morphological parsing of complex words[J]. Information gain from stems and suffixes, 2018, 9(5): 271.
[9] MALDONADO S, WEBER R. A wrapper method for feature selection using support vector machines[J]. Information sciences, 2009, 179(13): 2208-2217.
[10] 林棋, 张宏, 李千目. 一种基于MA-LSSVM的封装式特征选择算法[J]. 南京理工大学学报, 2016, 40(1): 10-16
LIN Qi, ZHANG Hong, LI Qianmu. Wrapper feature selection algorithm based on MA-LSSVM[J]. Journal of Nanjing University of Science and Technology, 2016, 40(1): 10-16
[11] 胡峰, 杨梦. 基于特征聚类的封装特征选择算法[J]. 计算机工程与设计, 2018, 39(1): 230-237
HU Feng, YANG Meng. Algorithm for wrapper feature selection based on feature clustering[J]. Computer engineering and design, 2018, 39(1): 230-237
[12] 王晓初, 王士同, 包芳, 等. 最小化类内距离和分类算法[J]. 电子与信息学报, 2016, 38(3): 532-540
WANG Xiaochu, WANG Shitong, BAO Fang, et al. Minimize intra-class distance and classification algorithm[J]. Journal of electronics & information technology, 2016, 38(3): 532-540
[13] PENG Hanchuan, LONG Fuhui, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(8): 1226-1238.
[14] 郭凯文, 潘宏亮, 侯阿临. 基于特征选择和聚类的分类算法[J]. 吉林大学学报(理学版), 2018, 56(2): 395-398
GUO Kaiwen, PAN Hongliang, HOU Alin. Classification algorithm based on feature selection and clustering[J]. Journal of Jilin University (science edition), 2018, 56(2): 395-398
[15] 李纯果, 张春琴, 李海峰. 基于排序互信息的无监督特征选择[J]. 河北大学学报(自然科学版), 2020, 40(2): 200-204
LI Chunguo, ZHANG Chunqin, LI Haifeng. Unsupervised feature selection based on ranking mutual information[J]. Journal of Hebei University (natural science edition), 2020, 40(2): 200-204
[16] 刘云, 肖雪, 黄荣乘. 混合蒙特卡罗搜索的特征选择算法的优化[J]. 信息技术, 2020, 44(5): 28-31, 36
LIU Yun, XIAO Xue, HUANG Rongcheng. Optimization of feature selection based on hybrid Monte Carlo Tree[J]. Information technology, 2020, 44(5): 28-31, 36
[17] 周传华, 李鸣, 吴幸运. 最大相关与独立分类信息最大化特征选择算法[J]. 计算机技术与发展, 2020, 30(8): 46-52
ZHOU Chuanhua, LI Ming, WU Xingyun. Feature selection algorithm for maximizing maximum correlation and independent classification information[J]. Computer technology and development, 2020, 30(8): 46-52
[18] 张俐, 王枞. 基于最大相关最小冗余联合互信息的多标签特征选择算法[J]. 通信学报, 2018, 39(5): 111-122
ZHANG Li, WANG Cong. Multi-label feature selection algorithm based on joint mutual information of max-relevance and min-redundancy[J]. Journal on communications, 2018, 39(5): 111-122
[19] 李扬, 顾雪平. 基于改进最大相关最小冗余判据的暂态稳定评估特征选择[J]. 中国电机工程学报, 2013, 33(34): 179-186
LI Yang, GU Xueping. Feature selection for transient stability assessment based on improved maximal relevance and minimal redundancy criterion[J]. Proceedings of the CSEE, 2013, 33(34): 179-186
[20] 胡敏杰, 林耀进, 王晨曦, 等. 基于拉普拉斯评分的多标记特征选择算法[J]. 计算机应用, 2018, 38(11): 3167-3174
HU Minjie, LIN Yaojin, WANG Chenxi, et al. Multi-label feature selection algorithm based on Laplace score[J]. Journal of computer applications, 2018, 38(11): 3167-3174
[21] 陈谌, 梁雪春. 基于基尼指标和卡方检验的特征选择方法[J]. 计算机工程与设计, 2019, 40(8): 2342-2345, 2360
CHEN Chen, LIANG Xuechun. Feature selection method based on Gini index and chi-square test[J]. Computer engineering and design, 2019, 40(8): 2342-2345, 2360
[22] 徐明, 高翔, 许志刚, 等. 基于改进卡方统计的微博特征提取方法[J]. 计算机工程与应用, 2014, 50(19): 113-117, 142
XU Ming, GAO Xiang, XU Zhigang, et al. Microblog feature extraction method based on improved chi-square statistics[J]. Computer engineering and applications, 2014, 50(19): 113-117, 142
[23] BOMZE I M, DE KLERK E. Solving standard quadratic optimization problems via linear, semidefinite and copositive programming[J]. Journal of global optimization, 2002, 24(2): 163-185.
[24] LIU Hairong, YANG Xingwei, LATECKI L J, et al. Dense neighborhoods on affinity graph[J]. International journal of computer vision, 2012, 98(1): 65-82.
[25] DORA S, SUBRAMANIAN K, SURESH S, et al. Development of a self-regulating evolving spiking neural network for classification problem[J]. Neurocomputing, 2016, 171: 1216-1229.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems