[1]LIU Fang,TIAN Feng,LI Xin,et al.A collaborative filtering recommendation method for online learning resources incorporating the learner model[J].CAAI Transactions on Intelligent Systems,2021,16(6):1117-1125.[doi:10.11992/tis.202009005]
Copy

A collaborative filtering recommendation method for online learning resources incorporating the learner model

References:
[1] 中国互联网络信息中心(CNNIC). 第45次中国互联网络发展状况统计报告[R]. 北京: 中国互联网络信息中心(CNNIC), 2020: 4.
[2] AL-SHAMRI M Y H. Power coefficient as a similarity measure for memory-based collaborative recommender systems[J]. Expert systems with applications, 2014, 41(13): 5680-5688.
[3] NAJAFABADI M K, MOHAMED A, ONN C W. Animpact of time and item influencer in collaborative filtering recommendations using graph-based model[J]. Information processing & management, 2019, 56(3): 526-540.
[4] WANG Yong, DENG Jiangzhou, GAO J, et al. A hybrid user similarity model for collaborative filtering[J]. Information sciences, 2017, 418-419: 102-118.
[5] JIANG Shan, FANG S C, AN Qi, et al. A sub-one quasi-norm-based similarity measure for collaborative filtering in recommender systems[J]. Information sciences, 2019, 487: 142-155.
[6] MU Yi, XIAO Nianhao, TANG Ruichun, et al. An efficient similarity measure for collaborative filtering[J]. Procedia computer science, 2019, 147: 416-421.
[7] WANG T I, TSAI K H, LEE M C, et al. Personalized learning objects recommendation based on the semantic-aware discovery and the learner preference pattern[J]. Educational technology & society, 2007, 10(3): 84-105.
[8] SEGAL A, KATZIR Z, GAL Y, et al. EduRank: a collaborative filtering approach to personalization in E-learning[C]//Proceedings of the 7th International Conference on Educational Data Mining. London, UK, 2014: 68-74.
[9] ZHANG Fuzheng, YUAN N J, LIAN Defu, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2016: 353-362.
[10] KLA?NJA-MILI?EVI? A, IVANOVI? M, VESIN B, et al. Enhancing e-learning systems with personalized recommendation based on collaborative tagging techniques[J]. Applied intelligence, 2018, 48(6): 1519-1535.
[11] BAKER R S J D, CORBETT A T, ALEVEN V. More accurate student modeling through contextual estimation of slip and guess probabilities in Bayesian knowledge tracing[C]//Proceedings of the 9th International Conference on Intelligent Tutoring Systems. Montreal, Canada, 2008.
[12] SALEHI M. Application of implicit and explicit attribute based collaborative filtering and BIDE for learning resource recommendation[J]. Data & knowledge engineering, 2013, 87: 130-145.
[13] KURILOVAS E, SERIKOVIENE S, VUORIKARI R. Expert centred vs learner centred approach for evaluating quality and reusability of learning objects[J]. Computers in human behavior, 2014, 30: 526-534.
[14] 现代远程教育技术标准化委员会. CELTS-11, 学习者模型规范[S]. 现代远程教育技术标准化委员会, 2000: 11.
[15] COSTA R D, SOUZA G F, VALENTIM R A M, et al. The theory of learning styles applied to distance learning[J]. Cognitive systems research, 2020, 64: 134-145.
[16] ARIEVITCH I M. Reprint of: the vision of Developmental Teaching and Learning and Bloom’s Taxonomy of educational objectives[J]. Learning, culture and social interaction, 2020, 27: 100473.
[17] ZLATKOVIC D, DENIC N, PETROVIC M, et al. Analysis of adaptive e-learning systems with adjustment of Felder-Silverman model in a Moodle DLS[J]. Computer applications in engineering education, 2020, 28(4): 803-813.
[18] DASCALU M I, BODEA C N, MOLDOVEANU A, et al. A recommender agent based on learning styles for better virtual collaborative learning experiences[J]. Computers in human behavior, 2015, 45: 243-253.
[19] GONZáLEZ G, LóPEZ B, DE LA ROSA J L. A multi-agent smart user model for cross-domain recommender systems[C]//Proceedings of Beyond Personalization 2005: The Next Stage of Recommender Systems Research, International Conference on Intelligent User Interfaces IUI 2005. San Diego, USA, 2005.
[20] 谢修娟, 陈永, 李香菊, 等. 融入信任的变权重相似度模型在线学习协同推荐算法[J]. 小型微型计算机系统, 2018, 39(3): 525-528
XIE Xiujuan, CHEN Yong, LI Xiangju, et al. Collaborative recommendation algorithm of online learning based on trust-combined simi-larity model with variable weight[J]. Journal of Chinese computer systems, 2018, 39(3): 525-528
[21] 陈秀明, 刘业政. 多粒度犹豫模糊语言环境下未知权重的多属性群推荐方法[J]. 控制与决策, 2016, 31(9): 1631-1637
CHEN Xiuming, LIU Yezheng. Method of group recommender systems with unknown attribute weights in a multi-granular hesitant fuzzy linguistic term environment[J]. Control and decision, 2016, 31(9): 1631-1637
[22] KOREN Y. Collaborative filtering with temporal dynamics[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 89-97.
[23] 孙歆, 王永固, 邱飞岳. 基于协同过滤技术的在线学习资源个性化推荐系统研究[J]. 中国远程教育, 2012(8): 78-82
[24] 郑洁, 钱育蓉, 杨兴耀, 等. 基于信任和项目偏好的协调过滤算法[J]. 计算机应用, 2016, 36(10): 2784-2788, 2798
ZHENG Jie, QIAN Yurong, YANG Xingyao, et al. Collaborative filtering algorithm based on trust and item preference[J]. Journal of computer applications, 2016, 36(10): 2784-2788, 2798
[25] 丁永刚, 张馨, 桑秋侠, 等. 融合学习者社交网络的协同过滤学习资源推荐[J]. 现代教育技术, 2016, 26(2): 108-114
DING Yonggang, ZHANG Xin, SANG Qiuxia, et al. The collaborative filtering recommendation of learning resources combined with learners’ social network[J]. Modern educational technology, 2016, 26(2): 108-114
[26] 刘忠宝, 宋文爱, 孔祥艳, 等. 云环境下学习者建模与学习资源推荐方法研究[J]. 电化教育研究, 2017, 38(7): 58-63
LIU Zhongbao, SONG Wenai, KONG Xiangyan, et al. Research on learner modeling and learning resources recommendation in cloud environment[J]. E-education research, 2017, 38(7): 58-63
Similar References:

Memo

-

Last Update: 2021-12-25

Copyright © CAAI Transactions on Intelligent Systems